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Abstract

The article examines the problem of translation and rotation of a nominally (slightly deformed) spherical rigid inclu-
sion embedded into an unbounded elastic medium. To the first order in the small parameter characterizing the bound-
ary perturbation, explicit expressions are deduced for the induced displacement field as well as for the net force and net
torque required to produce the applied translation and rotation.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Elasticity literature abounds in solutions of problems for solids containing inclusions or cavities possess-
ing a high degree of symmetry, e.g. those of spherical and ellipsoidal configurations (for references, see for
example, Lure, 1964, 1970; Podilchuk, 1979; Teodosiu, 1982; Mura, 1987; Nemat-Nasser and Hori, 1998).
For instance, theoretical calculations of the elastic fields induced in an elastic medium by static translations
and rotations of spherical and ellipsoidal inclusions are given by Lure (1964, 1967, 1970), Kanwal and Shar-
ma (1976), Walpole (1991a,b), Phan-Thien and Kim (1994), Kachanov et al. (2000) and those correspond-
ing to time-harmonic translations and rotations of spherical inclusions by Rahman (2000). Although
solutions of this type are important for synthesizing those for more complicated cases, their applicability
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is however somewhat restricted, because inclusions and cavities of such canonical shapes are atypical of the
irregular shapes usually encountered in practical applications. It is Guz and Nemish (1984) who first
launched a systematic investigation into a wide range of three-dimensional elasticity problems for bodies
with non-canonical boundaries as well as for canonical bodies containing inclusions and flaws of non-
canonical shapes. In particular, these authors solve the problems of stress concentrations near cylindrical,
conical, bi-conical inclusions and cavities as well as a nearly spherical cavity in elastic solids under torsion
and bi-axial remote loading. Using a regular perturbation scheme in conjunction with Papkovich–Neuber
representation for the displacement vector, these authors are able to evaluate the stress concentrations near
the inclusions and the flaws of the above types in closed form up to third order in the small parameter char-
acterizing the shape perturbations. Their analyses are extremely rich in mathematical contents. The only
limitation of these studies is that they are valid for only axisymmetric shape perturbations, i.e. perturba-
tions that do not depend on the polar angle.1

In the present article, we consider the problem of a rigid inclusion in an elastic solid, whose shape devi-
ates slightly from that of a perfect sphere (reference sphere) when the inclusion is given a small arbitrary
motion with respect to the center of the reference sphere. Since any general motion of a rigid body is com-
pounded of a motion of pure translation and one of pure rotation, the problem is therefore equivalent to
two separate problems in which the first problem corresponds to the case where the inclusion is subjected to
a pure translation with respect to the center of the reference sphere while the second to the case of pure
rotation around the same center. In terms of the small parameter characterizing the boundary perturbation,
we reduce these problems to an infinite set of problems, each satisfying the equilibrium equations and some
appropriate boundary conditions on the surface of the reference sphere. We then employ Lure�s general
solution of elastic equilibrium equations for a spherical geometry to deduce elegant solutions for the per-
turbation fields. To the first order in the small parameter, we deduce explicit expressions for the induced
displacement fields as well as the stiffness relations that relate the net force and net torque required to pro-
duce the applied translation and rotation of the inclusion to its geometry. In the special case where the elas-
tic medium is an incompressible one, these results agree with those derived by Brenner (1964), for the low
Reynolds number resistance of a slightly perturbed sphere to translational and rotational motions in an
unbounded fluid.

The organization of the article is as follows. In Section 2, we dispose of some basic definitions and prop-
erties of spherical harmonics, which are of frequent occurrence, directly or indirectly, in the subsequent sec-
tions. In Section 3, we give precise statement of the problem and the associated boundary conditions. We
then use a regular perturbation scheme to reduce the problems to an infinite set of problems in terms of the
small parameter characterizing the boundary perturbation. Section 4 is devoted to the general analysis of
elastic problems when displacement type boundary values are prescribed on spherical surfaces. This solu-
tion is due to Lure and is given here for the sake of completeness as well as for better understanding of the
reader of the analysis to follow. Sections 5 and 6 are essentially devoted to the solutions of the perturbation
problems. We have restricted the analysis up to the first order perturbation field only. It can, of course, be
carried through for higher order perturbation fields using the same technique. However, the calculations
beyond the first order perturbation field become very unwieldy. We deduce explicit expressions for the dis-
placement fields for the zeroth and first order perturbation fields. In Section 7, using Betti�s reciprocal the-
orem, we derive explicit expressions for the net forces and net torques required to produce the applied
translation and rotation of the inclusion. These expressions are valid up to the first order in the small
parameter characterizing the boundary perturbation. No attempt is made to establish the convergence of
the perturbation solutions, which is far too complex to be investigated in a problem of this kind. However,
1 One of the reviewers brought my attention to two more books by Guz and Nemish (1982, 1990) where solutions of some additional
non-canonical three-dimensional elasticity problems are presented. I have been however not able to see these books.



2544 M. Rahman / International Journal of Solids and Structures 43 (2006) 2542–2577
as we show in Section 7, in a particular case involving the translation of a prolate spheroidal inclusion, the
first order perturbation solution is within an absolute error of 6% when compared with the exact solution of
the problem. The same order of accuracy can be expected from other shape perturbations.

We begin by introducing the notation that will be used in the subsequent analysis. Bold face characters are
used to mean vectors. The symbol $ stands for the three-dimensional del operator. Second order tensors are
designated by capital letters with hats. The symbolbI stands for dyadic idemfactor while the symbols�, d and ·
are meant to designate the operations of dyadic multiplication, scalar product and cross product, respectively.
2. Spherical harmonics: some basic definitions and properties

In this section, we recall some basic properties of harmonic functions and spherical harmonics that will
be frequently used in the subsequent analysis. Let (R,h,/) be the corresponding spherical coordinates re-
lated to the Cartesian coordinates through the mappings
x1 ¼ R cos h sin /; x2 ¼ R sin h sin /; x3 ¼ R cos /; 0 6 R <1; 0 6 h 6 2p; 0 6 / 6 p: ð1Þ
The spherical base vectors eR, eh, e/ are related to the Cartesian ones ei (i = 1,2,3) by the following
equations:
eR

eh

e/

8><>:
9>=>; ¼

sin / cos h sin / sin h cos /

cos / cos h cos / sin h � sin /

� sin h cos h 0

264
375 e1

e2

e3

8><>:
9>=>;:
A function F(x) is said to be harmonic in a closed region, i.e. the set of points consisting of a domain with
its boundary, if it is twice differentiable and satisfies Laplace�s equation, namely, $2F(x) = 0 at all interior
points. If the region or domain is an infinite one, a supplementary condition on the behavior of the function
at infinity has to be imposed (see, Kellog, 1929).

Separation of variables in Laplace�s equation written in spherical coordinates shows that its solution can
be represented as
F ðxÞ ¼
X1
n¼0

Sn
in the interior, and
F ðxÞ ¼
X1
n¼0

S�ðnþ1Þ
in the exterior of a sphere of radius a (say) with its center coincident with the origin. Here Sn is a general
solid spherical harmonic of degree n, which admits the representation
SnðR; h;/Þ ¼
R
a

� �n

Y nðh;/Þ; S�ðnþ1ÞðR; h;/Þ ¼
a
R

� �nþ1

Y nðh;/Þ;
where n = 0,1,2, . . . , and Yn(h,/) is the general surface spherical harmonic of degree n and is given by
Y nðh;/Þ ¼
Xn

k¼0

ðaðnÞk cos nhþ bðnÞk sin nhÞP ðkÞn ðcos /Þ; bð0Þn ¼ 0:
Here P ðkÞn ðcos /Þ is the associated Legendre function of the first kind, of degree n and order k, and
aðnÞk ; bðnÞk ðk ¼ 1; 2; . . . ; kÞ are 2n + 1 arbitrary constants. For any given non-negative integral values of n,k,
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P ðkÞn ð#Þ ¼ ð1� #
2Þk=2 dkP nð#Þ

d#k ; P nð#Þ ¼
1

2nn!

dnð#2 � 1Þn

d#n ; P ð0Þn ð#Þ ¼ P nð#Þ;
where Pn(#) is the Legendre polynomial of degree n.
Next, a vector solid spherical harmonic of degree n, Sn, is a vector-valued function of R,h,/ which al-

lows a representation of the form
Sn ¼ RnYnðh;/Þ;
in which Yn(h,/) is the corresponding vector surface spherical harmonic of the same degree with the prop-
erty that given any constant vector a, a • Yn(h,/) is a scalar surface spherical harmonic of order n. Taking,
for example, a = ei, we observe that each Cartesian component of Yn(h,/) is a scalar surface spherical har-
monic of degree n.

Similarly, a dyadic solid spherical harmonic of degree n, bSn, is a tensor-valued function of R,h,/ which
allows a representation of the form
bSn ¼ Rn bYnðh;/Þ;

in which bYnðh;/Þ is the corresponding vector surface spherical harmonic of the same degree with the prop-
erty that given any constant vectors a; b, a � bYnðh;/Þ � b is a scalar surface spherical harmonic of degree n.
Taking, for instance, a = ei, b = ej, we observe that each Cartesian dyadic component is a scalar surface
spherical harmonic of degree n. Any polyadic solid spherical harmonic can be defined in a similar fashion.

We also recall that if Ym, Yn are two scalar surface spherical harmonics of different degrees m, n, then
Z
Y mY n dx ¼ 0; ð2Þ
where dx = sin/d/dh and the integration is over the surface of a sphere of unit radius.
Next, recall the theorem that the value of any finite single-valued function v(h,/) given over the surface

of a unit sphere can be expressed, at every point of the surface at which the function is continuous, as a
series of rational integral surface spherical harmonics, provided the function has only a finite number of
lines and points of discontinuity and of maxima and minima and this expansion is unique (Hobson,
1955; Jeans, 1966). The expansion formula is as follows:
vðh;/Þ ¼
X1
n¼0

Xn

m¼0

ðaðmÞn cos mhþ bðmÞn sin mhÞP ðmÞn ðcos /Þ; bð0Þn ¼ 0; ð3Þ
where
aðmÞn ¼ ð2nþ 1Þðn� mÞ!
2pðnþ mÞ! cm

Z
P m

n ðcos /0Þ cos mh0vðh0;/0Þdx0;

bðmÞn ¼ ð2nþ 1Þðn� mÞ!
2pðnþ mÞ!

Z
P m

n ðcos /0Þ sin mh0vðh0;/0Þdx0:
ð4Þ
Here c0 = 1/2 and cm = 1 "m P 1 and the integration is over the entire surface of a unit sphere.
For the special case where the function v(h,/) is expressible in the form v(h,/) = gn(x)/Rn in which gn(x)

is a finite polynomial in x (x � (x1,x2,x3)) of degree n, it can be expanded into a series of surface spherical
harmonics using a more straightforward method belonging to Gauss (see Hobson, 1955, p. 147). First, the
function gn(x) is represented as
gnðxÞ ¼
X½n=2�

i¼0

R2iSn�2i; ð5Þ



2546 M. Rahman / International Journal of Solids and Structures 43 (2006) 2542–2577
where [n/2] is equal to the integer part of n/2. The solid spherical harmonics Sn�2i are determined by re-
peated application of the Laplace operator to Eq. (5) and using the following identity:
r2ðR2iSn�2iÞ ¼ 2ið2n� 2iþ 1ÞR2i�2Sn�2i;
resulting in the following simultaneous equations:
r2gnðxÞ ¼
X½n=2�

i¼1

2ið2n� 2iþ 1ÞR2i�2Sn�2i;

ðr2Þ2gnðxÞ ¼
X½n=2�

i¼2

2ið2i� 2Þð2n� 2iþ 1Þð2n� 2iþ 3ÞR2i�4Sn�2i;

..

.

ðr2ÞkgnðxÞ ¼ 2
X½n=2�

i¼k

i!ð2n� 2iþ 1Þ!ðn� i� k þ 1Þ!
ði� kÞ!ðn� iÞ!ð2n� 2i� 2k þ 2Þ! R2i�2kSn�2i;

..

.

ðr2Þ½n=2�gnðxÞ ¼
2½n=2�!ðnþ 1þ dðnÞÞ!ð1þ dðnÞÞ!
fðnþ dðnÞÞ=2g!ð2þ 2dðnÞÞ! SdðnÞ;

ð6Þ
where we have introduced the notation d(2n) = 0 "n = 0,1,2, . . . , and where d(2n + 1) = 1 "n = 0,1,2, . . .
From the last equation in (6), the value of Sd(n) is determined; from the preceding one the value of S2+d(n)

and so on, until the value of Sn is determined. If we divide (5) by Rn, we have an expression for integral
algebraic function of coshsin/, sinhsin/, cos/ as the sum of surface spherical harmonics, i.e.
vðh;/Þ ¼ gnðxÞ
Rn ¼

X½n=2�

i¼0

Y n�2i; Sn ¼ RnY n:
Similar results also hold for any polyadic integral algebraic function of coshsin/, sinhsin/, cos/. As a sim-
ple illustration of the above results, let us express the dyad eR � eR in dyadic surface spherical harmonics.
Obviously, in this case, vnðxÞ ¼ v̂2ðxÞ ¼ R� R. Then, it follows from the last equation in (6) that
bS0 ¼
1

6
r2ðR� RÞ ¼

bI
3
;

while from Eq. (5), we derive
bS2 ¼ R� R� R2
bI
3
:

Thus, in this case,
eR � eR ¼ bY2 þ bY0;

bY2 ¼ eR � eR �
bI
3
; bY0 ¼

bI
3
:

ð7Þ
Finally, a solid spherical harmonic of degree n is a homogeneous function of x of order n and as such sat-
isfies Euler�s theorem on homogeneous functions, namely,
R � rSn ¼ nSn:
Similar equations can be written for any vector, dyadic and in general for any polyadic solid spherical har-
monic of degree n.
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3. Statement of the problem and boundary conditions

Consider an unbounded three-dimensional space filled with a homogeneous isotropic elastic medium
with Young�s modulus E > 0 and Poisson�s ratio m (�1 < m 6 1/2), containing a rigid, nominally spherical
inclusion, i.e. an inclusion whose shape deviates slightly from that of a perfectly spherical inclusion of ra-
dius a, hereafter called the reference sphere. The inclusion is given a small general motion in any way with
respect to the center of the reference sphere. It is well known that any general motion of a rigid body is
compounded of a motion of translation and one of rotation. In view of this observation as well as the linear
nature of the response of the medium, it follows that there will be no loss in generality if we treat these cases
separately. Thus, let us assume that the inclusion is given a small translation u0 and a small rotation x with
regard to the center of the reference sphere along some arbitrary directions. We introduce a Cartesian coor-
dinate system with its origin at the center of the reference sphere. Then, the surface of the nominally spher-
ical inclusion may be described by an equation of the following form
R ¼ a½1þ ef ðh;/Þ�; ð8Þ

in which ef(h,/) is an arbitrary function such that maxjef(h,/)j � 1. In what follows the three-dimensional
space with the nominally spherical inclusion deleted will be denoted by X, while that with the reference
sphere deleted by X0. The symbols oX, oX0 are used to designate the surface of the nominally spherical
inclusion and that of the reference sphere, respectively.

In the absence of body forces, the field equations characterizing the equilibrium of a linearly elastic,
homogeneous isotropic solid are given by
2bv ¼ ruþ ðruÞT;

r̂ ¼ 2l
m

1� 2m
bIr � uþ bv� �

;

r � r̂ ¼ 0;

ð9Þ
in which u is the displacement vector, ($u)T is the transpose of $u, bv is the strain tensor and r̂ is the cor-
responding stress tensor. Provided the displacement vector is at least twice differentiable, elimination of the
stresses among equations in (9) leads to the displacement equations of equilibrium
r2uþ 1

1� 2m
rr � u ¼ 0 in X: ð10Þ
The solution of Eq. (10) is subject to the following boundary condition
u ¼ u0 þ x� R on oX: ð11Þ
Furthermore, the solution must satisfy the condition at infinity requiring that u be at least of O(R�1) as
R!1 (uniformly in h and /).

The net force and the net torque exerted by the inclusion on the medium are given by the formulae
P ¼
Z

oX
n � r̂dX; M ¼

Z
oX

R� ðn � r̂ÞdX; ð12Þ
where n is the surface normal directed into the inclusion.
The presence of the small quantity e induces the idea to represent the displacement vector as
u ¼
X1
i¼0

eiuðiÞ in X: ð13Þ
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Then putting (13) into (10) and equating the coefficients in the like powers of e in the resulting equations, we
see that each individual perturbation u(i) satisfies an equation of the form (10), namely,
r2uðiÞ þ 1

1� 2m
rr � uðiÞ ¼ 0 in X: ð14Þ
Considering the case of translation first, the solution of Eqs. (14) must satisfy the following boundary con-
dition on the surface of the inclusion
X1
i¼0

eiuðiÞ ¼ u0 on oX; ð15Þ
and the condition at infinity
uðiÞ ¼ OðR�1Þ as R!1 ðuniformly in h and /Þ: ð16Þ
Expanding the function u(i) in Taylor�s series around R = a, we have
uðiÞ ¼
X1
j¼0

1

j!
ðR� aÞj o

iuðiÞ

oR

�����R¼a ¼
X1
j¼0

ej

j!
ajf jðh;/Þ o

iuðiÞ

oRj

�����R¼a: ð17Þ
Putting (17) into (15), we obtain
X1
i¼0

ei
X1
j¼0

ejðaf ðh;/ÞÞj ojuðiÞ

oRj

�����R¼a ¼ u0 on oX;
which can be rewritten as
X1
i¼0

ei uðiÞ þ
Xi

j¼1

1

j!
ðaf ðh;/ÞÞj o

juði�jÞ

oRj

�����R¼a

" #
¼ u0 on oX: ð18Þ
Now equating the like powers of e on both sides of Eq. (18), we have
uð0Þ ¼ u0 on oX0;

uðiÞ ¼ �
Xi

j¼1

1

j!
ajf jðh;/Þ o

juði�jÞ

oRj on oX0 8i ¼ 1; 2; 3; . . .
ð19Þ
Similarly, for the case of pure rotation of the nominally spherical inclusion, the boundary conditions to be
satisfied on the surface of the reference sphere are
uð0Þ ¼ x� R on oX0;

uð1Þ ¼ af ðh;/Þ x� eR �
ouð0Þ

oR

� �
on oX0;

uðiÞ ¼ �
Xi

j¼1

1

j!
ajf jðh;/Þ o

juði�jÞ

oRj on oX0 8i ¼ 2; 3; . . .

ð20Þ
Thus, the problems are reduced to those of finding the solutions of the system of Eq. (14) satisfying the
boundary conditions (19) and (20) prescribed on the surface of the reference sphere and the conditions
at infinity.
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4. General analysis

It is well known (see, for instance, Lure, 1964) that in the absence of body forces, the displacement vector
becomes a biharmonic vector. In this case, as shown by Trefftz, the displacement vector may be represented
in the form
u ¼ Uþ ðR2 � a2ÞrW; ð21Þ
where W, U are respectively a harmonic scalar and a harmonic vector. This representation is especially suit-
able for cases where boundary conditions are prescribed on spherical surfaces as is the present case. It can
be shown by putting (21) into the equations of equilibrium (10) that
ð1� 2mÞWþ ð3� 4mÞR � rWþ 1

2
r �U ¼ 0: ð22Þ
It is assumed that the displacement vector given on the surface of the sphere meets the requirements out-
lined in Section 2 and as such can be expanded into a series of surface spherical harmonics, namely,
ujR¼a ¼ UjR¼a ¼
X1
k¼0

Ykðh;/Þ; ð23Þ
where Yk(h,/) is a vector surface spherical harmonic of degree k.
Thus for the external problem (R > a) we have
U ¼
X1
k¼0

U�ðkþ1Þ ¼
X1
k¼0

a
R

� �kþ1

Ykðh;/Þ; ð24Þ
where U�(k+1) are the homogeneous harmonic vectors of degree �k � 1. Similarly, the harmonic scalar W is
also expanded into surface spherical harmonics, namely,
W ¼
X1
k¼0

W�ðkþ1Þ ¼
X1
k¼0

a
R

� �kþ1

Z�ðkþ1Þðh;/Þ: ð25Þ
Putting (24) and (25) into (22), the following equation is obtained:
ð1� 2mÞW�ðkþ1Þ � ð3� 4mÞðk þ 2ÞW�ðkþ1Þ þ
1

2
r �U�ðkþ1Þ ¼ 0; ð26Þ
whence it follows that
W�ðkþ1Þ ¼
r �U�ðkþ1Þ

2½3k þ 5� 2mð2k þ 3Þ� : ð27Þ
Therefore, the solution of the external problem is given by
u ¼
X1
k¼0

U�ðkþ1Þ þ
1

2
ðR2 � a2Þ rr �U�ðkþ1Þ

3k þ 5� 2mð2k þ 3Þ

� �
in X: ð28Þ
This is the general solution of the problem given in Lure (1970). It is important to note that since each per-
turbation field satisfies equations that are exactly of the same form as those for elastic equilibrium (see Eq.
(14)), the representation (28) is therefore valid for all perturbation problems. We will therefore use Eq. (28)
to deduce solutions for the different perturbation fields. In view of greater simplicity, we will commence
with the case of pure rotation.
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5. Rotation of a nominally spherical inclusion

In this case, the boundary conditions of the problem are (limiting up to only first order perturbation):
uð0Þ ¼ x� R on oX0;

uð1Þ ¼ af ðh;/Þ x� eR �
ouð0Þ

oR

� �
on oX0:

ð29Þ
Solution of the zeroth order perturbation is straightforward, because the right hand side of the first equa-
tion in (29) is already a surface vector spherical harmonic of degree one, namely
Y1 ¼ ax� eR:
Hence, the only surviving member of the sequence {U�(k+1)} in Eq. (28) is U�2 which is given by
U�2 ¼
a
R

� �2

Y1 ¼
a3

R2
x� eR: ð30Þ
Putting (30) into the general solution (28), we obtain
uð0Þ ¼ U�2 þ
1

2
ðR2 � a2Þrr �U�2

8� 10m
in X0: ð31Þ
However, $ • U�2 = 0, and so Eq. (31) takes the following final form:
uð0Þ ¼ a3

R2
x� eR in X0: ð32Þ
The corresponding stress-vector corresponding to a surface with the outward normal n can be shown to be
n � rð0Þ ¼ 3l
a3

R3
ðx� n� 2x� eR � n � eR þ n� eR � x � eRÞ: ð33Þ
For our problem, n = �eR, and therefore, Eq. (33) gives
n � r̂ð0Þ ¼ �3leR � x on oX0: ð34Þ

Thus, the net force exerted by the inclusion on the medium is
Pð0Þ ¼ �
Z

oX0

eR � r̂ð0Þ ds ¼ �3l
Z

oX0

eR � xds ¼ �3l
Z

oX0

eR ds

� �
� x ¼ 0; ð35Þ
where 0 is a null vector. Therefore, the inclusion does not exert any force on the medium.
On the other hand, the net torque required to produce the rotation x is
Mð0Þ ¼
Z

oX0

R� ðn � r̂ð0ÞÞds ¼ �3l
Z

oX0

R� ðeR � xÞds: ð36Þ
However, R · (eR · x) = eR � R • x � Rx. Therefore, Eq. (36) takes the form
Mð0Þ ¼ �3lax �
Z

oX0

eR � eR dsþ 3lax
Z

oX0

ds: ð37Þ
Using the expansion of the dyad eR � eR into surface spherical harmonics (see Eqs. (7)) and invoking the
orthogonality property of the surface spherical harmonics of different orders over the surface of a unit
sphere, we find that
Mð0Þ ¼ �lax � bI Z
oX0

dsþ 3lax
Z

oX0

ds ¼ 2lax
Z

oX0

ds ¼ 8pla3x: ð38Þ
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This is the solution of Lure, of the problem of a perfectly spherical rigid inclusion in bonded contact with an
elastic solid when the former is subjected to a small constant rotation in an arbitrary direction.

We rewrite Eq. (38) in the form:
Mð0Þ ¼ bKð0Þ � x; ð39Þ

where
bKð0Þ ¼ 8pla3bI: ð40Þ

We call the symmetric tensor bKð0Þ the rotational stiffness tensor. Physically, the component bK ij characterizes
the ith component of the torque required to produce a unit rotation of the inclusion around the xj-axis.

This completes the solution of the zeroth order perturbation field.

5.1. Solution of the first order perturbation field

We now proceed to the solution corresponding to the first order perturbation field. The boundary con-
dition to be satisfied is
uð1Þ ¼ af ðh;/Þ x� eR �
ouð0Þ

oR

� �
on oX0: ð41Þ
Assuming that f(h,/) is a sufficiently smooth function to allow for a uniformly convergent in h and / series-
expansion like
f ðh;/Þ ¼
X1
k¼0

fkðh;/Þ; ð42Þ
where fk(h,/) is a surface spherical harmonic of degree k, we rewrite Eq. (41) as
uð1Þ ¼ 3a
X1
k¼0

x� eRfkðh;/Þ on oX0: ð43Þ
The problem now is to expand (43) into a series of surface spherical harmonics. To do this, we can use Eqs.
(3) and (4) for expanding any arbitrary function of h,/ into surface spherical harmonics. However, for our
problem, it is more expedient to follow a different route based on a rather ad hoc method. The presence of
the term eRfk in (43) naturally induces the idea to consider the gradient of a function like Rmfk. For instance,
rðRmfkÞ ¼ mRm�1eRfk þ Rmrfk;
so that the function
R1�mrðRmfkÞ ¼ meRfk þ Rrfk ð44Þ

is a homogeneous function of order zero, but not necessarily a surface spherical harmonic. We now pose the
question: for what values of m, is R1�m$(Rmfk) a surface spherical harmonic? Assuming that it is a surface
spherical harmonic of degree p, the question is how m and p are related to k. Since, by hypothesis it is a
surface spherical harmonic of degree p, the relevant solid spherical harmonic must satisfy Laplace�s equa-
tion, namely,
r2ðRpþ1�mrðRmfkÞÞ ¼ r2ðR1�mþpÞrðRmfkÞ þ R1�mþprðr2ðRmfkÞÞ
þ 2ð1� mþ pÞRp�m�1R � rrðRmfkÞ ¼ 0:
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The above expression, after some simple vector manipulations, can be rewritten as
2 Th
spheri
r2ðRpþ1�mrðRmfkÞÞ ¼ ½2m� kðk þ 1Þ þ pðp þ 1Þ�Rp�k�1rðRkfkÞ
þ ðm� kÞ½pðp þ 1Þ � ðk þ 1Þðk þ 2Þ�Rp�3fkR ¼ 0: ð45Þ
For Eq. (45) to be identically zero for all values of R, R and fk, it is necessary that
½2m� kðk þ 1Þ þ pðp þ 1Þ� ¼ 0;

ðm� kÞ½pðp þ 1Þ � ðk þ 1Þðk þ 2Þ� ¼ 0:
ð46Þ
From the second equation in (46), it follows that
m ¼ k or m ¼ �k � 1: ð47Þ

On the other hand, the second equation in (46) implies that if m = k, then p = �k or p = k � 1 while if
m = �k � 1, then p = k + 1 or p = �k�2. Thus, there could be two distinct scenarios, namely

Ck�1 � R1�krðRkfkÞ which is a surface spherical harmonic of degree k � 1. Corresponding to Ck�1, there
are two solid spherical harmonics, one of degree �k and the other of degree k � 1;2

Dkþ1 � Rkþ2rðR�1�kfkÞ which is a surface spherical harmonic of degree k + 1. Corresponding to Dk+1,
there are two solid spherical harmonics, one of degree �k�2 and the other of degree k + 1.

Of course, for our exterior problem, the solid spherical harmonics corresponding to the predominantly
positive degrees, namely, k � 1 and k + 1, must be discarded.

We thus have
Ck�1 � R1�krðRkfkÞ ¼ keRfk þ Rrfk;

Dkþ1 � Rkþ2rðR�1�kfkÞ ¼ �ðk þ 1ÞeRfk þ Rrfk:
ð48Þ
Solving equations in (48) for eRfk, we obtain
eRfk ¼
1

2k þ 1
ðCk�1 �Dkþ1Þ: ð49Þ
Putting (49) into (43), we have
uð1Þ ¼ 3a
X1
k¼0

fkx� eR ¼ 3a
X1
k¼0

1

2k þ 1
x� ðCk�1 �Dkþ1Þ on oX0: ð50Þ
Thus, with (50), the boundary data (41) is expanded into surface spherical harmonics and the solution of
the first order perturbation field is given by
uð1Þ ¼ 3a
X1
k¼0

1

2k þ 1
x� a

R

� �k
Ck�1 �

a
R

� �kþ2

Dkþ1 þ
1

2
ðR2 � a2Þ 1

3k þ 2� 2mð2k þ 1Þrr �
a
R

� �k
Ck�1

	 
�
� 1

2
ðR2 � a2Þ 1

3k þ 8� 2mð2k þ 5Þrr �
a
R

� �kþ2

Dkþ1

	 
�

in X0.
is is in accord with a well-known result in the theory of spherical harmonics, that says that corresponding to every surface
cal harmonic of degree k, there correspond two solid spherical harmonics, one of degree k and the other of degree �k � 1.
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Thus, to O(e), the solution of the problem is
u ¼ a3

R2
x� eR þ 3ea

X1
k¼0

1

2k þ 1
x� a

R

� �k
Ck�1 �

a
R

� �kþ2

Dkþ1 þ
1

2
ðR2 � a2Þ 1

3k þ 2� 2mð2k þ 1Þrr
�

� a
R

� �k
Ck�1

	 

� 1

2
ðR2 � a2Þ 1

3k þ 8� 2mð2k þ 5Þrr �
a
R

� �kþ2

Dkþ1

	 
�
þOðe2Þ ð51Þ
in X.
The correctness of this solution can be immediately checked against the solution of a rather a trivial case.

Specifically, consider the case where the spherical inclusion is given a uniform perturbation ea along the
outward normal. In this case,
fk ¼
1; k ¼ 0

0; k P 1

	 

;

and so
Ck�1 ¼ 0 8k ¼ 0; 1; 2; . . .

Dkþ1 ¼
�eR; k ¼ 0

0; k ¼ 1; 2; 3; . . .

	 

:

ð52Þ
Putting (52) into (51), we obtain
u ¼ a3ð1þ 3eÞ
R2

x� eR þOðe2Þ in X: ð53Þ
Note that as a result of this perturbation, the perfectly spherical inclusion of radius a again becomes one of
radius a(1 + e) and hence the exact solution of the problem, as per Eq. (32), is given by
u ¼ a3ð1þ eÞ3

R2
x� eR in X;
which, to first order in e, agrees with (53). This simple test renders credence to the correctness of the solu-
tion (51).
6. The translating nominally spherical inclusion

We now proceed to the solution of the problem of translation of the nominally spherical inclusion.
Limiting up to the first order perturbation field, the boundary conditions to be satisfied on the surface
of the reference sphere are
uð0Þ ¼ u0 on oX0;

uð1Þ ¼ 3

5� 6m
½2ð1� mÞbI � eR � eR� � u0f ðh;/Þ on oX0:

ð54Þ
Focusing first on the zeroth order problem, we note that Y0 = u0, and hence the only surviving member of
the sequence {U�(k+1)} in (28) is U�1 which is given by
U�1 ¼
a
R

u0:
Therefore, the solution of the zeroth order perturbation field is
uð0Þ ¼ U�1 þ
1

2
ðR2 � a2Þrr �U�1

5� 6m
¼ a

R
u0 þ

R2 � a2

2ð5� 6mÞ
a

R3
ð3eR � eR � bIÞ � u0 ð55Þ
in X0.
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It can be easily shown that the stress-vector corresponding to the surface R = a is
n � r̂ð0Þ ¼ �eR � r̂ð0Þ ¼ 6lð1� mÞ
ð5� 6mÞa u0 on oX0: ð56Þ
Thus, the total force exerted by the reference spherical inclusion on the medium due to a constant transla-
tion u0 is given by
Pð0Þ ¼
Z

oX0

n � r̂ð0Þ ds ¼ 24plð1� mÞ
5� 6m

au0: ð57Þ
This is the solution of Lure, of the problem of a perfectly spherical inclusion in bonded contact with an
elastic solid when the former is subjected to a small constant translation in an arbitrary direction.

The inclusion does not exert any torque with respect to the origin since
Mð0Þ ¼
Z

oX0

R� Pð0Þ ds ¼ 24plð1� mÞa2

5� 6m

Z
oX0

eR ds
� �

� u0 ¼ 0: ð58Þ
We write the expression (57) as
Pð0Þ ¼ bCð0Þ � u0; ð59Þ

where
bCð0Þ ¼ 24plð1� mÞa
5� 6m

bI: ð60Þ
We call bCð0Þ the translational stiffness tensor. Essentially, Cð0Þij is the ith component of the force required to
produce a unit translation of the reference spherical inclusion along xj-axis.

6.1. Solution of the first order perturbation field

We now proceed to the solution for the first order perturbation field. The boundary condition to be sat-
isfied on the spherical boundary R = a is
uð1Þ ¼ 3

5� 6m
½2ð1� mÞbI � eR � eR� � u0f ðh;/Þ

¼ 3

5� 6m

X1
k¼0

½2ð1� mÞbIfkðh;/Þ � eR � eRfkðh;/Þ� � u0 on oX0: ð61Þ
The problem now consists in expanding the right hand side of Eq. (61) into a series of surface spherical
harmonics. Notice that the first term in Eq. (61), namely bI � u0fkðh;/Þ is already a surface spherical har-
monic of degree k. The problem then reduces to that of expanding the term eR � eRfk(h,/) into a series
of dyadic surface spherical harmonics. To this end, we again adopt a technique similar to that developed
in the previous section. In particular, we note that the presence of the dyad eR � eR is suggestive that we
look closely into quantities of the form rðRm1 Ck�1Þ;rðRm2 Dkþ1Þ; we have
rðRm1 Ck�1Þ ¼ kðm1 � 1ÞRm1�1eR � eRfk þ kRm1�1bIfk þ ðm1 þ 1ÞRm1 eR �rfk

þ kRm1rfk � eR þ Rm1þ1r�rfk;

rðRm2 Dkþ1Þ ¼ ðk þ 1Þð1� m2ÞRm2�1eR � eRfk � ðk þ 1ÞRm2�1bIfk þ ðm2 þ 1ÞRm2 eR �rfk

� ðk þ 1ÞRm2rfk � eR þ Rm2þ1r�rfk;
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so that the functions
R1�m1rðRm1 Ck�1Þ ¼ kðm1 � 1ÞeR � eRfk þ kbIfk þ ðm1 þ 1ÞReR �rfk

þ kRrfk � eR þ R2r�rfk;

R1�m2rðRm2 Dkþ1Þ ¼ ðk þ 1Þð1� m2ÞeR � eRfk � ðk þ 1ÞbIfk þ ðm2 þ 1ÞReR �rfk

� ðk þ 1ÞRrfk � eR þ R2r�rfk;

ð62Þ
are homogeneous of degree zero. Requiring that they are surface spherical harmonics of degrees n1 and n2,
respectively, the question is how mi, ni (i = 1,2) are related to k. Since by hypothesis they are surface spher-
ical harmonics of degrees n1 and n2, the corresponding solid spherical harmonics must satisfy Laplace�s
equation, namely,
r2fR1�m1þn1rðRm1 Ck�1Þg ¼ 0; r2fR1�m2þn2rðRm2 Dkþ1Þg ¼ 0:
These equations yield
ðm1 þ n1Þðn1 � m1 þ 1Þ ¼ 0; ðm2 þ n2Þðn2 � m2 þ 1Þ ¼ 0: ð63Þ

Take, for instance, the first equation in (63). To simplify the analysis, let us put
m1 ¼ k � 1 or m1 ¼ �k: ð64Þ

If m1 = k � 1, n1 is equal to either �(k � 1) or k � 2. On the other hand, when m1 = �k, n1 is equal to either
k or �k � 1. Accordingly, two different dyadic surface spherical harmonics emerge, namely,

R2�k$(Rk�1Ck�1) which is a surface spherical harmonic of degree k � 2; corresponding to this surface
spherical harmonics are two solid spherical harmonics, one of degree �(k � 1) and the other of degree
k�2;
Rk+1$(R�kCk�1) which is a surface spherical harmonic of degree k; corresponding to this surface spher-
ical harmonics are two solid spherical harmonics, one of degree k and the other of degree �k � 1.

Similarly, putting m2 = k + 1, �k � 2, we obtain two more surface spherical harmonics, namely,

R�k$(Rk+1Dk+1) which is a surface spherical harmonic of degree k; corresponding to this surface spher-
ical harmonics are two solid spherical harmonics, one of degree �(k + 1) and the other of degree k;
Rk+3$(R�k�2Dk+1) which is a surface spherical harmonic of degree k + 2 and corresponding to this sur-
face spherical harmonics are two solid spherical harmonics, one of degree k + 2 and the other of degree
�k � 3.

Evidently, for our exterior problem, the solid spherical harmonics corresponding to the predominantly
positive degrees, namely, k�2, k, k + 2, should be abandoned.

We thus have
bEk�2 � R2�krðRk�1Ck�1Þ ¼ kðk � 2ÞeR � eRfk þ kbIfk þ kReR �rfk þ kRrfk � eR þ R2r�rfk;bFk � Rkþ1rðR�kCk�1Þ ¼ �kðk þ 1ÞeR � eRfk þ kbIfk � ðk � 1ÞReR �rfk

þ kRrfk � eR þ R2r�rfk;bGk � R�krðRkþ1Dkþ1Þ ¼ �kðk þ 1ÞeR � eRfk � ðk þ 1ÞbIfk þ ðk þ 2ÞReR �rfk

� ðk þ 1ÞRrfk � eR þ R2r�rfk;bHkþ2 � Rkþ3rðR�k�2Dkþ1Þ ¼ ðk þ 1Þðk þ 3ÞeR � eRfk � ðk þ 1ÞbIfk � ðk þ 1ÞReR �rfk

� ðk þ 1ÞRrfk � eR þ R2r�rfk:

ð65Þ
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Denoting bTk ¼ bIfk which is, of course, a dyadic surface spherical harmonic of degree k, we rewrite Eqs. (65)
as
kðk � 2ÞeR � eRfk þ kReR �rfk þ kRrfk � eR þ R2r�rfk ¼ bEk�2 � kbTk;

� kðk þ 1ÞeR � eRfk � ðk � 1ÞReR �rfk þ kRrfk � eR þ R2r�rfk ¼ bFk � kbTk;

� kðk þ 1ÞeR � eRfk þ ðk þ 2ÞReR �rfk � ðk þ 1ÞRrfk � eR þ R2r�rfk ¼ bGk þ ðk þ 1ÞbTk;

ðk þ 1Þðk þ 3ÞeR � eRfk � ðk þ 1ÞReR �rfk � ðk þ 1ÞRrfk � eR þ R2r�rfk ¼ bHkþ2 þ ðk þ 1ÞbTk:

ð66Þ

This is a system of four linear algebraic equations with four unknowns, namely,
eR � eRfk; ReR �rfk; Rrfk � eR; R2r�rfk:
Thus, each of these unknowns can be expressed in terms of the four dyadic surface spherical harmonics
(65). However, since for our problem, we are interested in eR � eRfk only, we only list the solution for
it:
eR � eRfk ¼
1

2k þ 1

1

2k þ 3
ð bHkþ2 � bGkÞ �

1

2k � 1
ðbFk � bEk�2Þ

� �
: ð67Þ
In using Eq. (67), it should be assumed that bE�1 ¼ 0̂, bE�2 ¼ 0̂ where 0̂ designates the null dyad.
In consequence of the relation (67), Eq. (61) becomes
uð1Þ ¼ 3

5� 6m

X1
k¼0

2ð1� mÞbTk �
1

2k þ 1

1

2k þ 3
ð bHkþ2 � bGkÞ �

1

2k � 1
ðbFk � bEk�2Þ

	 
� �
� u0 ð68Þ
on oX0.
Thus, expansion of the boundary condition into surface spherical harmonics for the first order pertur-

bation problem is accomplished and the solution for the first order perturbation field is straightforwardly
obtained using the general solution (28) as
uð1Þ ¼ 3

5� 6m

X1
k¼0

a
R

� �kþ1

2ð1� mÞbTk þ
bGk

ð2k þ 1Þð2k þ 3Þ þ
bFk

4k2 � 1

( )
0

"

� a
R

� �kþ3 bHkþ2

ð2k þ 1Þð2k þ 3Þ �
a
R

� �k�1 bEk�2

4k2 � 1
þ R2 � a2

2ð3k þ 5� 2mð2k þ 3ÞÞrr

� a
R

� �kþ1

2ð1� mÞbTk þ
bGk

ð2k þ 1Þð2k þ 3Þ þ
bFk

4k2 � 1

 !( )

� R2 � a2

2ð3k þ 11� 2mð2k þ 7ÞÞð2k þ 1Þð2k þ 3Þrr �
a
R

� �kþ1 bHkþ2

	 

� R2 � a2

2ð3k � 1� 2mð2k � 1ÞÞð4k2 � 1Þ
rr � a

R

� �k�1bEk�2

	 
#
� u0 ð69Þ
in X0. Thus, the solution of the problem up to the first order in e is given by u = u(0) + eu(1), where u(0) and
u(1) are given by Eqs. (55) and (69).
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7. The net force and the net torque exerted by the inclusion

In this section, we derive expressions for the net force and torque exerted on the medium by the inclu-
sion. They are given by Eqs. (12) from which it is evident that the strain tensor corresponding to the dis-
placement fields (50) and (69) need to be calculated and this could be quite a laborious job. In what follows
we will proceed along a different route based on Betti�s reciprocal theorem. Once again, we will treat the
cases of translation and rotation separately.

7.1. Translation

Consider the following two elastic states. The first state corresponds to the infinite elastic medium with
the reference spherical inclusion. This reference inclusion is given an arbitrary translation �u0 with respect to
its center. The second state corresponds to the nominally spherical inclusion subjected to a translation u0

with regard to the center of the reference sphere. Thus the boundary conditions for these states can be writ-
ten as
ð1Þu ¼ �u0 on oX0;
ð2Þu ¼ u0 on oX:
Reader would notice that for Betti�s reciprocal theorem to be applicable, it is necessary that the bodies
(their configurations, boundaries, etc.) in both states have to be the same. Thus, apparently, Betti�s theorem
can not be applied to these states since the first state involves the reference spherical inclusion while the
second the nominally spherical inclusion. However, note that since oX differs slightly from oX0, therefore
the boundary condition corresponding to the second state can be transferred onto oX0 via the relations (19).
It is on this proviso that we can apply Betti�s reciprocal theorem to these states. Furthermore, in applying
Betti�s reciprocal theorem to bodies whose boundaries extend to infinity, the properties of the source and
the field at infinity need to be accommodated. This observation is due to Gurtin and Sternberg (1961) (see
also Gurtin, 1972). Following these authors, we consider the outer boundaries of the bodies to be bounded
by a spherical shell of a large radius q (q	 a). With these assumptions, Betti�s reciprocal theorem applied
to the above states reads as
Z

oX0

�u0 � ðn � ð2Þr̂Þdsþ
Z

oXq

�u0 � ðn � ð2Þr̂Þs

¼
Z

oX0

ðð2Þuð0Þ þ eð2Þuð1ÞÞ � ðn � ð1Þr̂Þdsþ
Z

oXq

ðð2Þuð0Þ þ eð2Þuð1ÞÞ � ðn � ð1Þr̂ÞdsþOðe2Þ: ð70Þ
Now, let q!1 and note that the displacement vector attenuates at most as O(q�1) when q!1, and so
the stress vector corresponding to the spherical surface oXq decays as O(q�2) when q!1. Therefore, the
contributions from oXq as q!1 can be ignored. Thus, (70) can be rewritten as
Z

oX0

�u0 � ðn � ð2Þr̂Þds ¼
Z

oX0

ðð2Þuð0Þ þ eð2Þuð1ÞÞ � ðn � ð1Þr̂ÞdsþOðe2Þ: ð71Þ
Now, since �u0 is a constant vector, we can write the integral on the left hand side of Eq. (71) as
�u0 �
Z

oX0

n � ð2Þr̂ds: ð72Þ
Note that since the origin is a singular point for ð2Þr̂, we can write
Z
oX0

n � ð2Þr̂ds ¼
Z

oXd

n � ð2Þr̂dsþ
Z

oXd[oX0

n � ð2Þr̂ds; ð73Þ
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where oXd is the surface of a sphere of radius d where 0 < d� a with the center at the origin. Now, since the
integrand in the second integral in (73) does not have any singularity, we can use Gauss�s divergence the-
orem to convert it to a volume integral enclosed by the spherical boundaries oXd and oX0:
3 Str
r � ð2Þ
Z
oXd[oX0

n � ð2Þr̂ds ¼
Z

X0
r � ð2Þr̂dX; ð74Þ
where X 0 is the volume enclosed by the boundaries oXd,oX0. Now, since the medium is in equilibrium,
r � ð2Þr̂ ¼ 0 in X 0.3 Thus, the second integral in (73) is zero, and Eq. (74) reduces to
Z

oX0

n � ð2Þr̂ds ¼
Z

oXd

n � ð2Þr̂ds: ð75Þ
From Eq. (75), it follows that the surface integral in (72) is independent of the bounding surface and hence
it can be taken over any closed surface including the origin. We choose to take oX, the bounding surface of
the nominally spherical inclusion, as the bounding surface. Thus,
Z

oX0

n � ð2Þr̂ds ¼
Z

oX
n � ð2Þr̂ds: ð76Þ
But, the integral on the right hand side of the equation in (76) is precisely the net force exerted by the inclu-
sion on the medium, i.e.
P ¼
Z

oX
n � ð2Þr̂ds: ð77Þ
In view of (77), the integral on the left hand side of Eq. (71) assumes the form:
Z
oX0

�u0 � ðn � ð2Þr̂ÞdX ¼ �u0 � P: ð78Þ
Now, let us turn to evaluate the integral on the right hand side of Eq. (71). Obviously, we have
ð2Þuð0ÞjoX0

¼ u0 and ð2Þuð1ÞjoX0
is given by (61), while n � ð1Þr̂joX0

by (56). In consideration of these relations,
it follows that
Z

oX0

ðð2Þuð0Þ þ eð2Þuð1ÞÞ � ðn � ð1Þr̂Þds ¼ u0 � Pð0Þ þ e
6lð1� mÞ
ð5� 6mÞa u0 �

Z
oX0

uð1Þ ds: ð79Þ
In view of (68), the integral on the right hand side of Eq. (79) takes the form:
Z
oX0

uð1Þ ds ¼ 3

5� 6m

Z
oX0

2ð1� mÞbT0 � bF0 þ
bG0

3
�
bE0

15

" #
ds: ð80Þ
Notice that in view of the orthogonality property of surface spherical harmonics of different degrees over
the surface of a unit sphere, only 0th order harmonics are retained in the integrand in Eq. (80).

However, from (65) we have that
bF0 ¼ 0; bG0 ¼ �bT0 ¼ �bIf0; bE0 ¼ r�rðR2f2Þ: ð81Þ
ictly speaking, the volume X 0 might be comprised of �chunks� of elastic regions as well as absolutely rigid regions. Equation
r̂ ¼ 0 is valid for absolutely rigid regions as well, since the stress tensor ð2Þr̂ is identically zero in such regions.
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Therefore Eq. (80) takes the form:
Z
oX0

uð1Þ ds ¼ 4pa2 bIf0 �
1

5ð5� 6mÞr �rðR
2f2Þ

� �
� �u0: ð82Þ
In consequence of the relations (78) and (82), Eq. (79) delivers to
�u0 � P ¼ Pð0Þ � u0 þ eu0 � bCð1Þ � �u0 þOðe2Þ; ð83Þ

where
bCð1Þ ¼ 24lpð1� mÞa
5� 6m

bIf0 �
1

5ð5� 6mÞr �rðR
2f2Þ

� �
: ð84Þ
If we denote by bC the stiffness tensor corresponding to the nominally spherical inclusion, then, by Eqs. (59)
and (60), it follows that the force P exerted by it on the medium due to the translation u0 (with regard to the
center of the perfect sphere) is
P ¼ bC � u0: ð85Þ

On the other hand, the force P(0) exerted by the reference spherical inclusion on the medium due to the
translation �u0 is given by
Pð0Þ ¼ bCð0Þ � �u0: ð86Þ

Putting Eqs. (85) and (86) into (83), we find that
�u0 � bC � u0 ¼ u0 � ðbCð0Þ þ ebCð1ÞÞ � �u0 þOðe2Þ: ð87Þ

From Eq. (87), it follows that up to O(e), the stiffness tensor for the medium with the nominally spherical
inclusion is given by
bC ¼ bCð0Þ þ ebCð1Þ þOðe2Þ: ð88Þ

Thus, up to O(e), the net force exerted by the nominally spherical inclusion to due a constant translation u0

with respect to the center of the reference spherical inclusion is
P ¼ bC � u0 ¼
24plð1� mÞa

5� 6m
ð1þ ef0Þu0 � e

1

5ð5� 6mÞr �rðR
2f2Þ � u0

� �
: ð89Þ
Eq. (89) shows that in general the direction of the net force required to produce the constant translation of a
nominally spherical inclusion is different from that of the applied translation.

In addition, the nominally spherical inclusion would exert on the medium a torque about the origin,
which can be calculated using the equation:
M ¼
Z

oX
R� ðn � r̂Þds: ð90Þ
To evaluate (90), we again make use of Betti�s reciprocal theorem. For the first state, we take the reference
spherical inclusion subjected to a small arbitrary rotation x around its center, while for the second state we
take the case of the nominally spherical inclusion subjected to the translation u0 with respect to the center of
the reference spherical inclusion. Using the same arguments as before, we deduce that
Z

oX0

ðx� RÞ � ðn � ð2Þr̂Þds ¼
Z

oX0

ðu0 þ euð1ÞÞ � ðn � ð1Þr̂ÞdsþOðe2Þ: ð91Þ
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Considering the identity
ðx� RÞ � ðn � ð2Þr̂Þ ¼ ðR� ðn � ð2Þr̂ÞÞ � x;
we rewrite (91) as
x �
Z

oX0

ðR� ðn � ð2Þr̂ÞÞds ¼
Z

oX0

ðu0 þ euð1ÞÞ � ðn � ð1Þr̂ÞdsþOðe2Þ: ð92Þ
As before, note that since the origin is a singular point for ð2Þr̂, we can write the surface integral on the left
hand side of Eq. (92) as
Z

oX0

R� ðn � ð2Þr̂Þds ¼
Z

oXd

R� ðn � ð2Þr̂Þdsþ
Z

oXd[oX0

R� ðn � ð2Þr̂Þds; ð93Þ
where oXd is the surface of a sphere of radius d where 0 < d� a with the center at the origin. Now, the
integrand in the second surface integral on the right hand side of Eq. (93) does not have any singularity
and it can be converted, by means of some well-known results from tensor analysis (see, for instance, Lure,
1970, p. 847) to the following volume integral enclosed by the spherical boundaries oXd and oX0:
Z

oXd[oX0

R� ðn � ð2Þr̂Þds ¼
Z

X0
ðR�r � ð2Þr̂� 2cÞdX; ð94Þ
where
c ¼ �1

2
em � ðem � ð2Þr̂Þ: ð95Þ
Since the stress-tensor in linearized elasticity theory is symmetric, it is a simple exercise to show from (95)
that c = 0. Furthermore, since the medium is in equilibrium, r � ð2Þr̂ ¼ 0 in X 0. Thus, the integral in (94) is
zero and Eq. (93) assumes the form:
Z

oX0

R� ðn � ð2Þr̂Þds ¼
Z

oXd

R� ðn � ð2Þr̂Þds: ð96Þ
Therefore, the surface integral on the left hand side of Eq. (96) is independent of the bounding surface and
hence it can be taken over any closed surface around the origin. As before, we choose to take the surface of
the nominally spherical inclusion, oX, as the bounding surface. Thus,
Z

oX0

R� ðn � ð2Þr̂Þds ¼
Z

oX
R� ðn � ð2Þr̂Þds: ð97Þ
But, the integral on the right hand side of the equation in (97) is precisely the net torque exerted by the
nominally spherical inclusion on the medium, i.e.
M ¼
Z

oX
R� ðn � ð2Þr̂Þds: ð98Þ
Therefore, Eq. (92) assumes the form:
x �M ¼
Z

oX0

ðu0 þ euð1ÞÞ � ðn � ð1Þr̂ÞdX0 þOðe2Þ: ð99Þ
Proceeding now on to evaluate the surface integral on the right hand side of Eq. (99), we note that n � ð1Þr̂ is
given by Eq. (56). Thus,
Z

oX0

u0 � ðn � ð1Þr̂Þds ¼ u0 �
Z

oX0

ðn � ð1Þr̂Þds ¼ �3lu0 �
Z

oX0

eR � xds

¼ �3lu0 �
Z

oX0

eR ds

� �
� x

	 

¼ 0; since

Z
oX0

eR ds ¼ 0: ð100Þ
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Hence, Eq. (99) delivers to the form:
x �M ¼ �e3l
Z

oX0

uð1Þ � ðeR � xÞdsþOðe2Þ: ð101Þ
However, owing to the identity uð1Þ � ðeR � xÞ ¼ ðuð1Þ � eRÞ � x, Eq. (101) reduces to
x �M ¼ �e3lx �
Z

oX0

ðuð1Þ � eRÞdsþOðe2Þ; ð102Þ
whence it follows that
M ¼ �e3l
Z

oX0

uð1Þ � eR dsþOðe2Þ: ð103Þ
Putting the expression for u(1) from (61) into (103), we obtain
M ¼ e
�9

5� 6m

X1
k¼0

2ð1� mÞâ1 � â2½ � � u0 þOðe2Þ; ð104Þ
where
â1 ¼
Z

oX0

bTk � eR ds;

â2 ¼
Z

oX0

ðeR � eRÞ � eRfk ds:
ð105Þ
Considering the first integral in (105), we can write
â1 ¼
Z

oX0

bI � eRfk ds ¼ bI � Z
oX0

eRfk ds

� �
: ð106Þ
Substituting the expression for eRfk from (49) into (106), we obtain
â1 ¼
1

2k þ 1
bI � Z

oX0

ðCk�1 �Dkþ1Þds

� �
¼ 4pa2dk1

2k þ 1
bI � C0; ð107Þ
where dij is the Kronecker�s delta.
Now take the second integral in (105); we observe that
â2 ¼
Z

oX0

ðeR � eRÞ � eRfk ds ¼
Z

oX0

ðeR � eRÞ � eRfk ds ¼ 0̂: ð108Þ
Thus, in view of relations (107) and (108), Eq. (104) delivers to the following final form:
M ¼ earðRf 1Þ �
24plð1� mÞa

5� 6m
u0 þOðe2Þ: ð109Þ
Note that the force exerted by the nominally spherical inclusion on the medium is given by Eq. (89). Thus,
up to O(e) Eq. (109) can be represented as
M ¼ earðRf 1Þ �
Z

oX
n � ð2Þr̂dXþOðe2Þ:
Subtracting the above equation from (90), we see that up to the first order in e
Z
oX
½R� earðRf 1Þ� � n � ð2Þr̂dX ¼ 0: ð110Þ
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Thus, it follows from (110) that if the inclusion is given the translation with regard to the point
R0 = ea$(Rf1), the inclusion would not exert on the medium any torque. Following Brenner (1964,
1963), we call this point the center of elastostatic stresses. As shown by Brenner (1964), up to the first order
in e, this point corresponds to the centroid of the nominally spherical inclusion (see Appendix A).

We now proceed to the case of rotation.

7.2. Rotation

The toque exerted by the inclusion on the medium is given by
M ¼
Z

oX
R� ðn � r̂Þds: ð111Þ
Here r̂ is the stress-tensor corresponding to the case of rotation of the nominally spherical inclusion. To
evaluate (111), we again use Betti�s reciprocal theorem. Consider two elastic states in which the first state
corresponds to the perfectly spherical inclusion subjected to the rotation �x around its center while the sec-
ond state to the nominally spherical inclusion subjected to the rotation x around the center of the reference
spherical inclusion. Applying Betti�s reciprocal theorem to these states and following the same lines of argu-
ments as those used for the case of translation, we obtain
Z

oX0

ð�x� RÞ � ðn � ð2Þr̂Þds ¼
Z

oX0

ð2Þu � ðn � ð1Þr̂ÞdsþOðe2Þ: ð112Þ
In Eq. (112), n � ð1Þr̂ is given by (34) with x replaced by �x, and (2)u by (50). In consideration of these equa-
tions and using arguments similar to those used for the case of pure translation, we deduce that
�x �M ¼ x �M
ð0Þ � e3l

Z
oX0

u1 � ðeR � �xÞdX0: ð113Þ
Since u1 � ðeR � �xÞ ¼ �x � ðu1 � eRÞ, Eq. (113) then reduces to
�x �M ¼ x �M
ð0Þ � e3l�x �

Z
oX0

ðu1 � eRÞds: ð114Þ
Next, putting the expression for u1 from (50) into (114), after some simple vector operations, we obtain
�x �M ¼ x �M
ð0Þ þ e9la�x � bKð1Þ � x; ð115Þ
where
bKð1Þ ¼X1
k¼0

Z
oX0

ðbIfk � eR � eRfkÞds: ð116Þ
To evaluate (116), we make use of the relations (67) and (81), and note that owing to the orthogonality
property of surface spherical harmonics of different degrees over the surface of a unit sphere, only zeroth
degree surface spherical harmonics should be retained; we thus obtain
bKð1Þ ¼ 4pa2

15
½10bIf0 �r�rðR2f2Þ�: ð117Þ
Next, since M is the net torque corresponding to the nominally spherical inclusion subjected to the rotation
x and M

ð0Þ
is that corresponding to the perfectly spherical inclusion subjected to the rotation �x, they can be

represented as
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M ¼ bK � x; M
ð0Þ ¼ bKð0Þ � �x: ð118Þ
Putting (118) into (115), we obtain
�x � bK � x ¼ x � ðbKð0Þ þ e9labKð1ÞÞ � �x: ð119Þ
It therefore follows from (119) that
bK ¼ bKð0Þ þ e9labKð1Þ: ð120Þ

Thus, the rotational stiffness tensor for the nominally spherical inclusion is given by Eq. (120) and this ten-
sor is a symmetric one.

Thus, up to the first order in e, the torque exerted by the nominally spherical inclusion subjected to a
rotation x around the center of the reference spherical inclusion is given by
M ¼ bK � x ¼Mð0Þ þ eMð1Þ ¼ 8pla3 ð1þ 3ef0Þx� e
3

10
r�rðR2f2Þ � x

� �
: ð121Þ
In addition, the inclusion would exert a force on the medium. This force is calculated using the equation
P ¼
Z

oX
n � r̂ds:
Again, we use Betti�s reciprocal theorem. For the two elastic states, we take the perfectly spherical inclusion
subjected to a constant translation u0. For the second state we take the nominally spherical inclusion sub-
jected to the rotation x. Then following the same lines of arguments as in the case of translation, we deduce
that up to the first order in e, the force exerted by the inclusion on the medium is given by
P ¼ e
6lð1� mÞ
ð5� 6mÞa

Z
oX0

uð1Þ dsþOðe2Þ; ð122Þ
where u(1) is given by (61), which, upon substitution into (122), yields the relation
P ¼ e
6plð1� mÞ
ð5� 6mÞ x�

Z
oX0

C0 dsþOðe2Þ ¼ e
24plð1� mÞa2

ð5� 6mÞ x� C0 þOðe2Þ

¼ e
24plð1� mÞa2

ð5� 6mÞ x�rðRf 1Þ þOðe2Þ: ð123Þ
It is well known that in the special where the medium is an incompressible one (with Poisson�s ration m =
1/2) and if the displacement vector is interpreted as the velocity vector, equations of elastostatics reduce to
those for slow steady viscous flow of a fluid also known as Stokes flow. It can be seen from Eqs. (89), (109),
(121) and (123) that they are consistent with Brenner�s results for the low Reynolds number resistance of a
slightly deformed spherical particle to small translational and rotational motions (see Brenner, 1964; Hap-
pel and Brenner, 1973).

We now consider some concrete examples of boundary perturbations:

Example 1. Consider first a rather trivial case where the shape perturbation is given by f = �1. Thus, in
this case f0 = �1, all other members of the sequence {fk} being zero.

Consider first the case of pure translation. With reference to Eq. (89), the net force exerted by the
inclusion on the medium is given by
P ¼ 24lpð1� mÞað1� eÞ
5� 6m

u0: ð124Þ
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Note that as a result of this shape perturbation, the original spherical inclusion of radius a again becomes a
perfectly spherical inclusion of radius a(1 � e). Therefore, the exact net force, as per Eq. (57), is
4 Fo
P ¼ 24lpð1� mÞað1� eÞ
5� 6m

u0;
which agrees with Eq. (124). The inclusion does not exert any torque on the medium.
For the case of pure rotation, the net torque exerted by the inclusion on the medium, as per Eq. (121), is

given by
M ¼ 8pla3ð1� 3eÞxþOðe2Þ: ð125Þ

The exact net torque, as per Eq. (38), is
M ¼ 8pla3ð1� eÞ3x;

which, to O(e) agrees with Eq. (125).

These simple tests render credence to the correctness of the foregoing analysis.

Example 2. As a second example, consider the case of translation of a prolate spheroid (see Fig. 1)4 whose
equation is given by
x2
1

a2
þ x2

2 þ x2
3

a2ð1� eÞ2
¼ 1; 0 < e� 1: ð126Þ
To O(e), Eq. (126) can be written as
R ¼ a 1þ e � 2

3
P 0ðcos /Þ � 1

3
P 2ðcos /Þ þ 1

6
cos 2hP 2

2ðcos /Þ
	 
� �

þOðe2Þ: ð127Þ
Thus, in the case
f0 ¼
�2

3
; f 2 ¼

�1

3
P 2ðcos /Þ þ 1

6
cos 2hP 2

2ðcos /Þ; R2f2 ¼
�R2

3
þ x2

1:
Putting these expressions into (89) and (109), we find that the net force is given by
P ¼ 24plð1� mÞa
5� 6m

1� e
2ð4� 5mÞ
5ð5� 6mÞ

	 

u0 � e

2

5ð5� 6mÞ e1 � e1 � u0

� �
þOðe2Þ; ð128Þ
while the net toque exerted by the inclusion is null.
If we introduce the notation
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

2

a2
1

s
;

then
e2 ¼ 2eþOðe2Þ:

Thus, Eq. (128) can be rewritten in terms of the eccentricity, e, of the spheroid as
P ¼ 24plð1� mÞa
5� 6m

1� e2 4ð4� 5mÞ
5ð5� 6mÞ

	 

u0 � e2 1

5ð5� 6mÞ e1 � e1 � u0

� �
þOðe4Þ: ð129Þ
r the sake of illustration, the shape perturbations in Figs. 1, 3–6, 8 are grossly exaggerated.



Fig. 1. Prolate spheroidal inclusion (Example 2).
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For instance, if the applied translation is in the x3 = 0 plane, then equation u0 • e3 = 0, and Eq. (129) gives
P x ¼
24plð1� mÞa

5� 6m
1� e2 3ð3� 4mÞ

5ð5� 6mÞ

� �
u01 þOðe4Þ;

P y ¼
24plð1� mÞa

5� 6m
1� e2 2ð4� 5mÞ

5ð5� 6mÞ

� �
u02 þOðe4Þ;

P z ¼ 0:

ð130Þ
Kanwal and Sharma (1976) (see also Kanwal, 1983) give the exact solution of this problem using the sin-
gularity method. In particular, they show that the components of the net force are
P x ¼
32plð1� mÞu01ae3

�2eþ ð1þ 3e2 � 4me2Þ ln½ð1þ eÞ=ð1� eÞ� ;

P y ¼
64plð1� mÞu02ae3

2e� ð1� 7e2 þ 8me2Þ ln½ð1þ eÞ=ð1� eÞ� ;

P z ¼ 0:

ð131Þ
Fig. 2 illustrates the absolute error of the perturbation solution (130) for different values of the eccentricity
of the prolate spheroid (Poisson�s ration is assumed to be equal to 0.25). It is clear from this plot that even
for a moderately prolate spheroidal inclusion with e = 0.7 (i.e. b = 0.71a), the absolute error does not ex-
ceed 6%. Thus, the first order perturbation solution yields remarkably accurate result. The same type of
accuracy may be expected from other boundary perturbations.

Consider now the rotation of the nominally spherical inclusion represented by Eq. (126). Referring to
Eqs. (121) and (123), we infer that the inclusion would exert the net torque on the medium
M ¼ 8pla3 x 1� e2 9

10

� �
� e2 3

10
e1 � e1 � x

� �
þOðe4Þ ð132Þ
around the center of the reference sphere while it would not exert any force.
In the special case where the rotation is around the x3 = 0 plane, Eq. (132) simplifies to
M ¼ 8pla3xe3 1� e2 9

10

� �
þOðe4Þ:
Example 3. As the third example, consider the case where the inclusion has the shape of a cardioid (see
Fig. 3), namely,
R ¼ að1þ e cos /Þ:
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Fig. 2. Absolute error estimates for P_X and P_Y for different values of the eccentricity of the prolate spheroid (Poisson�s
ratio = 0.25).

Fig. 3. Cardioid (Example 3).
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In this case, the only non-zero member of the sequence {fk} is f1:
f1 ¼ P 1ðcos /Þ: ð133Þ

Putting (133) into Eqs. (89) and (109), we see that for the case of pure translation, the net force is zero, but
the inclusion would exert a torque with respect to the center of the reference sphere, which is given by
M ¼ 24plð1� mÞa
5� 6m

u0 � eae3 þOðe2Þ: ð134Þ
Note that up to O(e), the centroid of the inclusion is, as per Eq. (A.3), is located at the point eae3, i.e. on the
positive x3-axis at a distance ea from the origin. Thus, if the translation is given with respect to the point
eae3, then the inclusion would not exert any torque on the medium.
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Consider now the case of pure rotation. Putting (133) into Eqs. (121) and (123), we observe that the net
toque exerted by the inclusion on the medium is null. However, the inclusion would exert a force which is
given by
P ¼ �e
24plð1� mÞa2

ð5� 6mÞ x� e3 þOðe2Þ:
Example 4. As the fourth example, let us consider the case where the shape perturbation is given by the
equation
f ðh;/Þ ¼ sin h cos hsin2/cos2/:
As a result of this perturbation, the inclusion assumes the shape shown in Fig. 4.
It can be shown using the methods of Section 2 that the above function can be expanded into a series of

surface spherical harmonics as
sin h cos hsin2/cos2/ ¼ 1

42
P 2

2ðcos /Þ sin 2hþ 1

105
P 2

4ðcos /Þ sin 2h:
Thus, in the case the non-zero members of the sequence {fk} are
f2 ¼
1

42
P 2

2ðcos /Þ sin 2h; f 4 ¼
1

105
P 2

4ðcos /Þ sin 2h:
Of the two surface spherical harmonics, only f2 contributes to the first order perturbation field. Thus, if this
inclusion is given a translation u0 with respect to the center of the reference sphere, the inclusion would
exert the following force on the medium:
P ¼ 24plð1� mÞa
5� 6m

u0 � e
1

35ð5� 6mÞ ðe1 � e2 þ e2 � e1Þ � u0

� �
þOðe2Þ: ð135Þ
Fig. 4. Inclusion shape corresponding to Example 4.
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Eq. (135) can be also written in component form if desired. In particular, if the applied translation is given
along the x1-axis (i.e. u0 = u0e1), from the formula (135), we find that
P x ¼
24plð1� mÞau0

5� 6m
þOðe2Þ; P y ¼ �e

24plð1� mÞau0

35ð5� 6mÞ2
þOðe2Þ; P z ¼ Oðe2Þ:
On the other hand, if this inclusion is given a rotation x about the center of the reference sphere, the
torque necessary to produce this rotation can be obtained by putting the value of f2 into (121) with
the result
M ¼ 8pla3 x� e
3

70
ðe1 � e2 þ e2 � e1Þ � x

� �
þOðe2Þ: ð136Þ
For instance, if the rotation x is given around the x1-axis (i.e. x = xe1), Eq. (136) yields:
Mx ¼ 8pla3xþOðe2Þ; My ¼ �e
12pla3x

35
þOðe2Þ; Mz ¼ Oðe2Þ:
In another special case where the rotation x is given about the x3-axis, Eq. (136) simplifies to
Mx ¼ My ¼ Oðe2Þ; Mz ¼ 8pla3xþOðe2Þ:

Thus, to the first order in e, the torque required to produce the rotation x = xe3 around the center of the
reference sphere is the same as that for the perfectly spherical inclusion.

Example 5. As the next example, we consider the case where the shape perturbation is given by
f ðh;/Þ ¼ sin hcos2hsin3/cos3/:
As a result of this perturbation, the inclusion assumes the shape shown in Fig. 5. It can be shown that the
function f(h,/) can be expanded into a series of surface spherical harmonics as
f ðh;/Þ ¼ 1

6930
P 3

6ðcos /Þ þ 1

1540
P 3

4ðcos /Þ
� �

sin 3h

� 2

693
P 1

6ðcos /Þ � 1

770
P 1

4ðcos /Þ � 1

63
P 1

2ðcos /Þ
� �

sin h:
Fig. 5. Inclusion shape corresponding to Example 5.
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Thus, in this case
f2 ¼
1

63
P 1

2ðcos /Þ sin h; f 4 ¼
1

770
P 1

4ðcos /Þ sin hþ 1

1540
P 3

4ðcos /Þ sin 3h;

f6 ¼
1

6930
P 3

6ðcos /Þ sin 3h� 2

693
P 1

6ðcos /Þ sin h:
Of the above surface spherical harmonics, only f2 contributes and we have
r�rðR2f2Þ ¼
1

21
ðe3 � e2 þ e2 � e3Þ: ð137Þ
Thus, the total force required to produce the translation u0 of the inclusion with regard to the center of the
reference sphere is
P ¼ 24plð1� mÞa
5� 6m

u0 � e
1

105ð5� 6mÞ ðe2 � e3 þ e3 � e2Þ � u0

� �
þOðe2Þ: ð138Þ
For instance, if the applied translation is along the x2-axis (i.e. u0 = u0e2), Eq. (138) gives
P x ¼ Oðe2Þ;

P y ¼
24plð1� mÞau0

5� 6m
þOðe2Þ;

P z ¼ �e
8plð1� mÞau0

35ð5� 6mÞ2
þOðe2Þ:
On the other hand, the net torque required to produce the rotation x of this inclusion around the center of
the reference sphere is
M ¼ 8pla3 x� e
1

70
ðe2 � e3 þ e3 � e2Þ � x

� �
þOðe2Þ: ð139Þ
In particular, if the rotation is given around the x3-axis (i.e. x = xe3), Eq. (139) yields
Mx ¼ Oðe2Þ; My ¼ e
�4pla3x

35
þOðe2Þ; Mz ¼ 8pla3xþOðe2Þ:
Example 6. Consider the case where the shape perturbation is specified as
f ðh;/Þ ¼ cos 2hþ cos 2/:
The resulting inclusion shape is illustrated in Fig. 6. The above shape function can be expanded into a series
of surface spherical harmonics. Listing only pertinent to our analysis the first three harmonics, we have
f0 ¼
�1

3
; f 1 ¼ 0; f 2 ¼

5

4
cos 2hsin2/þ 2

3
ð3cos2/� 1Þ
so that
r�rðR2f2Þ ¼
1

6
ð7e1 � e1 � 23e2 � e2 þ 16e3 � e3Þ:
Thus, if this inclusion is given a translation u0 with respect to the center of the reference sphere, the inclu-
sion would exert the following force on the medium:
P ¼ 24plð1� mÞa
5� 6m

1� e
1

3

� �
u0 � e

1

30ð5� 6mÞ ð7e1 � e1 � 23e2 � e2 þ 16e3 � e3Þ � u0

� �
þOðe2Þ:

ð140Þ



Fig. 6. Inclusion shape corresponding to Example 6.
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In particular, if the applied translation is along the x1-axis (i.e. u0 = u0e1), from the formula (140), we find
that
P x ¼
24plð1� mÞau0

5� 6m
1� e

57� 60m
30ð5� 6mÞ

� �
þOðe2Þ; P y ¼ Oðe2Þ; P z ¼ Oðe2Þ: ð141Þ
Fig. 7 illustrates the dependence on the Poisson�s ratio of the ratio of the magnitude of Px (Eq. (141)) to the
magnitude of Px corresponding to the perfectly spherical inclusion for different values of the small param-
etere. The effect of the Poisson�s ratio is such that the magnitude of the resultant force required to produce
the given translation of the inclusion decreases as the Poisson�s ratio increases. For instance, at e = 0.5, the
magnitude of this force is about 81% of that corresponding to the perfectly spherical inclusion for m = 0
whereas that for m = 0.5 is about 77%. The author is not aware of any numerical data available in the lit-
erature, which the above results can be compared with.

On the other hand, if this inclusion is given a rotation x about the center of the reference sphere, the
torque necessary to produce this rotation is characterized by the equation
M ¼ 8pla3 ð1� eÞx� e
1

20
ð7e1 � e1 � 23e2 � e2 þ 16e3 � e3Þ � x

� �
þOðe2Þ: ð142Þ
For instance, if the rotation x is given around the x1-axis (i.e. x = xe1), Eq. (142) yields:
Mx ¼ 8pla3x 1� e
27

20

� �
þOðe2Þ; My ¼ Oðe2Þ; Mz ¼ Oðe2Þ:
For instance, the above formulae are indicative that for e = 0.5, the magnitude of the total torque required
to produce the given rotation around the x1-axis is about 32.5% of that required for the perfectly spherical
inclusion.

In another special case when the rotation x is given about the x3-axis, Eq. (142) simplifies to
Mx ¼ My ¼ Oðe2Þ; Mz ¼ 8pla3x 1� e
9

5

� �
þOðe2Þ:



Fig. 7. Dependence of the load ratio with Poisson�s ratio for different values of the small parameter Epsilon.
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Example 7. Lastly, we consider an interesting case where the shape perturbation is given by
f ðh;/Þ ¼
�1; h1 6 h 6 h2;/1 6 / 6 /2

0; otherwise

	 

: ð143Þ
The reader would notice that this perturbation results in gouging out a small spherical element of the spher-
ical inclusion (see Fig. 8a). The function (143) can be expanded into an infinite series of surface spherical
harmonics with fk being
fk ¼ ak0P kðtÞ þ
Xk

i¼1

½aki cosðihÞ þ bki sinðihÞ�P ðiÞk ðtÞ; t ¼ cos /;
where
ak0 ¼
�ð2k þ 1Þ

4p
ðh2 � h1ÞL0

k ;

aki ¼
�ð2k þ 1Þðk � iÞ!

2piðk þ iÞ! ½sin ih2 � sin ih1�Li
k;

bki ¼
ð2k þ 1Þðk � iÞ!

2piðk þ iÞ! ½cos ih2 � cos ih1�Li
k:
Here the following notation is introduced:
Li
kðh1; h2;/1;/2Þ ¼

Z cos /1

cos /2

P i
kðtÞdt:



Fig. 8. (a,b) Inclusion shape corresponding to Example 7.
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Since, to O(e), the pertinent surface spherical harmonics are f0, f1, f2, we only list their values below:
f0 ¼
�1

4p
ðh2 � h1Þðcos /1 � cos /2Þ;

f1 ¼ a10 cos /þ ða11 cos hþ b11 sin hÞ sin /;

f2 ¼
1

2
a20ð3cos2/� 1Þ þ 3ða21 cos hþ b21 sin hÞ sin / cos /

þ 3ða22 cos 2hþ b22 sin 2hÞsin2/;

ð144Þ
where
a10 ¼
�3

8p
ðh2 � h1Þðcos2/1 � cos2/2Þ;

a11 ¼
�3

8p
ðsin h2 � sin h1Þ /1 � /2 �

1

2
sin 2/1 þ

1

2
sin 2/2

� �
;

b11 ¼
�3

8p
ðcos h2 � cos h1Þ /1 � /2 �

1

2
sin 2/1 þ

1

2
sin 2/2

� �
;

a20 ¼
�5

8p
ðh2 � h1Þðsin2/2 cos /2 � sin2/1 cos /1Þ;

a21 ¼
�5

12p
ðsin h2 � sin h1Þðsin3/2 � sin3/1Þ;

b21 ¼
5

12p
ðcos h2 � cos h1Þðsin3/2 � sin3/1Þ;

a22 ¼
�5

96p
½sin 2h2 � sin 2h1�½3ðcos /1 � cos /2Þ � ðcos3/1 � cos3/2Þ�;

b22 ¼
5

96p
½cos 2h2 � cos 2h1�½3ðcos /1 � cos /2Þ � ðcos3/1 � cos3/2Þ�:

ð145Þ
Thus, the net force required to produce a translation of u0 with respect to the center of the reference sphere
is given by
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P ¼ 24plð1� mÞa
5� 6m

1� e
h2 � h1

4p
ðcos /1 � cos /2Þ

	 

u0 � e

1

5ð5� 6mÞr �rðR
2f2Þ � u0

� �
þOðe2Þ;

ð146Þ

where $ � $(R2f2) assumes the following expression:
r�rðR2f2Þ ¼ a20ð3e3 � e3 � bIÞ þ 3 a21ðe1 � e3 þ e3 � e1Þ þ b21ðe2 � e3 þ e3 � e2Þf g
þ 6fa22ðe1 � e1 � e2 � e2Þ þ b22ðe1 � e2 þ e2 � e1Þg: ð147Þ
In addition, the inclusion would exert a torque on the medium around the center of the reference sphere,
which is given by
M ¼ e
24plð1� mÞa2

5� 6m
ða11e1 þ b11e2 þ a10e3Þ � u0 þOðe2Þ: ð148Þ
Similarly, for the case of pure rotation, the net torque required to produce a rotation of x around the center
of the reference sphere is
M ¼ 8pla3 1� 3e
h2 � h1

4p
ðcos /1 � cos /2Þ

	 

x� e

3

10
r�rðR2f2Þ � x

� �
þOðe2Þ; ð149Þ
where again $ � $(R2f2) is given by Eq. (148). In addition, the inclusion would exert a force on the medium
P ¼ e
24plð1� mÞa2

ð5� 6mÞ x� ða11e1 þ b11e2 þ a10e3Þ þOðe2Þ: ð150Þ
The reader would notice that several interesting particular cases arise depending on choosing particular val-
ues of h1, h2, /1, /2. Here we carry out details of one such particular case, specifically the case where h1 = 0,
h2 = 2p, which corresponds to gouging out an entire spherical strip from the reference sphere (see Fig. 8b).
In this case, Eqs. (144) and (145) simplify greatly and the equations corresponding to translation, namely,
Eqs. (146) and (148) reduce to
P ¼ 24plð1� mÞa2

5� 6m
1� e

1

2
ðcos /1 � cos /2Þ

	 

u0

�
þe

1

4ð5� 6mÞ ðsin2/2 cos /2 � sin2/1 cos /1Þð3e3 � e3 � bIÞ � u0

�
þOðe2Þ;

M ¼ �e
18plð1� mÞa2

5� 6m
ðcos2/1 � cos2/2Þe3 � u0 þOðe2Þ;

ð151Þ
while those corresponding to rotation, i.e. Eqs. (149) and (150), to
M ¼ 8pla3 1� e
3

2
ðcos /2 � cos /1Þ

	 

x

�
þ e

3

8
ðsin2/2 cos /2 � sin2/1 cos /1Þð3e3 � e3 � bIÞ � x

�
þOðe2Þ;

P ¼ �e
18plð1� mÞa2

5� 6m
ðcos2/1 � cos2/2Þx� e3 þOðe2Þ:

ð152Þ
If, in addition to h1 = 0, h2 = 2p, we assume that /2 = p, /1 = 0, we see Eqs. (151) and (152) reduce to
P ¼ 24plð1� mÞað1� eÞ
5� 6m

u0 þOðe2Þ; M ¼ Oðe2Þ; ð153Þ
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and
M ¼ 8pla3ð1� 3eÞxþOðe2Þ; P ¼ Oðe2Þ: ð154Þ

Note that the resulting shape perturbation produces a new perfectly spherical inclusion of radius a(1 � e)
and this case was discussed in Example 1. The reader would notice that Eqs. (153) and (154) are those ob-
tained in Example 1.
Fig. 9. Dependence of the load ratio on Poisson�s ratio for different values of the small parameter.

Fig. 10. Dependence of the angle Theta on Poisson�s ratio for different values of the small parameter.



Fig. 11. Dependence of the angle Phi on Poisson�s ratio for different values of the small parameter.
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Finally, we have worked out a general case for the case of pure translation, specifically the case where the
spherical element corresponding to h1 = p/4, h2 = p/3, /1 = p/4, /2 = p/3 is gouged out of the perfectly
spherical inclusion. Fig. 9 illustrates the dependence on the Poisson�s ratio of the ratio of the magnitude of
the resultant force for the gouged-out inclusion to that of the perfectly spherical inclusion for different
values of the small parameter e. Figs. 10 and 11 show the dependence on the Poisson�s ratio of the spherical
angles characterizing the direction of the resultant force for different values of e. The inclusion would also
exert a moment on the medium which is not given here, but be easily calculated using Eq. (150).

Various other shape perturbations can be treated in a similar fashion.
8. Closure

In the present article, we have presented the solution of the problem of a nominally spherical inclusion
embedded into an unbounded elastic medium and subjected to a small translation and a small rotation.
Physically such translational and rotational motions of macroscopic inclusions might be attributed to cer-
tain mechanisms of diffusional migration under the action of external forces. An inclusion can also migrate
in the absence of external forces. For instance, the influence of thermal fluctuations can give rise to the
Brownian motion of inclusions (for detail discussions of these mechanisms, see Geguzin and Krivoglaz,
1973). To the first order in the small parameter characterizing the boundary perturbation, explicit expres-
sions have been derived for the induced displacement field as well as for the net force and net torque re-
quired to produce the applied translation and rotation. In the special case where the elastic medium is
an incompressible one, these results are consistent with those derived by Brenner (1964), for the low
Reynolds number resistance of a slightly perturbed sphere to translational and rotational motions in an
unbounded fluid. Although no attempt has been made to establish the convergence of the perturbation
solutions, we have shown that in a particular case involving the translation of a prolate spheroidal inclu-
sion, the first order perturbation solution is within an absolute error of 6% when compared with the exact
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solution of the problem. The accuracy of the perturbation solutions can be further strengthened by adding
the solutions for higher order perturbation fields and using different techniques for improving the accuracy
of perturbation series (see, for instance, Van Dyke, 1974). Concluding this discussion, we note that the
methodology developed in the article can be applied to a number of closely-related elastostatic problems,
such as the one concerning a nominally spherical hole in an elastic medium under a uniform stress field at
infinity. Research in this direction is underway and will be reported in a future communication.
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Appendix A. Centroid of the nominally spherical inclusion

The centroid of the nominally spherical inclusion is determined by the formula
R0 ¼
1

V

Z
X

RdX; ðA:1Þ
where V is the volume enclosed by the nominally spherical inclusion, i.e.
V ¼
Z

X
dX:
First calculate V; we have
V ¼
Z

oX1

ds
Z að1þef Þ

0

R2 dR ¼ a3

3

Z
oX1

ð1þ 3ef ÞdsþOðe2Þ ¼ 4pa3

3
þ ea3

Z
oX1

f dsþOðe2Þ

¼ 4pa3

3
þ ea3

X1
k¼0

Z
oX1

fk dsþOðe2Þ ¼ 4pa3

3
þ e4pa3f0 þOðe2Þ;
where oX1 is the surface of a unit sphere.
We now move to evaluate the integral (A.1); since eR depends on h,/ only, we write
R0 ¼
1

V

Z
X

ReR dX ¼ 1

V

Z
oX1

eR ds
Z að1þef Þ

0

R3 dR ¼ a4

4V

Z
oX1

eRð1þ 4ef ÞdsþOðe2Þ

¼ ea4

V

Z
oX1

eRf dsþOðe2Þ ¼ ea4

V

X1
k¼0

Z
oX1

eRfk dsþOðe2Þ: ðA:2Þ
Inserting the expression (49) for eRfk into (A.2) and taking into view the fact that only 0th order surface
spherical harmonics contribute to the integral in (A.2), we have
R0 ¼
ea4

V

X1
k¼0

Z
oX1

eRfk dsþOðe2Þ ¼ 4pea4

3V
C0 þOðe2Þ ¼ earðRf 1Þ þOðe2Þ: ðA:3Þ
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