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Abstract

The article examines the problem of translation and rotation of a nominally (slightly deformed) spherical rigid inclu-
sion embedded into an unbounded elastic medium. To the first order in the small parameter characterizing the bound-
ary perturbation, explicit expressions are deduced for the induced displacement field as well as for the net force and net
torque required to produce the applied translation and rotation.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Elasticity literature abounds in solutions of problems for solids containing inclusions or cavities possess-
ing a high degree of symmetry, e.g. those of spherical and ellipsoidal configurations (for references, see for
example, Lure, 1964, 1970; Podilchuk, 1979; Teodosiu, 1982; Mura, 1987; Nemat-Nasser and Hori, 1998).
For instance, theoretical calculations of the elastic fields induced in an elastic medium by static translations
and rotations of spherical and ellipsoidal inclusions are given by Lure (1964, 1967, 1970), Kanwal and Shar-
ma (1976), Walpole (1991a,b), Phan-Thien and Kim (1994), Kachanov et al. (2000) and those correspond-
ing to time-harmonic translations and rotations of spherical inclusions by Rahman (2000). Although
solutions of this type are important for synthesizing those for more complicated cases, their applicability
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is however somewhat restricted, because inclusions and cavities of such canonical shapes are atypical of the
irregular shapes usually encountered in practical applications. It is Guz and Nemish (1984) who first
launched a systematic investigation into a wide range of three-dimensional elasticity problems for bodies
with non-canonical boundaries as well as for canonical bodies containing inclusions and flaws of non-
canonical shapes. In particular, these authors solve the problems of stress concentrations near cylindrical,
conical, bi-conical inclusions and cavities as well as a nearly spherical cavity in elastic solids under torsion
and bi-axial remote loading. Using a regular perturbation scheme in conjunction with Papkovich—Neuber
representation for the displacement vector, these authors are able to evaluate the stress concentrations near
the inclusions and the flaws of the above types in closed form up to third order in the small parameter char-
acterizing the shape perturbations. Their analyses are extremely rich in mathematical contents. The only
limitation of these studies is that they are valid for only axisymmetric shape perturbations, i.e. perturba-
tions that do not depend on the polar angle.’

In the present article, we consider the problem of a rigid inclusion in an elastic solid, whose shape devi-
ates slightly from that of a perfect sphere (reference sphere) when the inclusion is given a small arbitrary
motion with respect to the center of the reference sphere. Since any general motion of a rigid body is com-
pounded of a motion of pure translation and one of pure rotation, the problem is therefore equivalent to
two separate problems in which the first problem corresponds to the case where the inclusion is subjected to
a pure translation with respect to the center of the reference sphere while the second to the case of pure
rotation around the same center. In terms of the small parameter characterizing the boundary perturbation,
we reduce these problems to an infinite set of problems, each satisfying the equilibrium equations and some
appropriate boundary conditions on the surface of the reference sphere. We then employ Lure’s general
solution of elastic equilibrium equations for a spherical geometry to deduce elegant solutions for the per-
turbation fields. To the first order in the small parameter, we deduce explicit expressions for the induced
displacement fields as well as the stiffness relations that relate the net force and net torque required to pro-
duce the applied translation and rotation of the inclusion to its geometry. In the special case where the elas-
tic medium is an incompressible one, these results agree with those derived by Brenner (1964), for the low
Reynolds number resistance of a slightly perturbed sphere to translational and rotational motions in an
unbounded fluid.

The organization of the article is as follows. In Section 2, we dispose of some basic definitions and prop-
erties of spherical harmonics, which are of frequent occurrence, directly or indirectly, in the subsequent sec-
tions. In Section 3, we give precise statement of the problem and the associated boundary conditions. We
then use a regular perturbation scheme to reduce the problems to an infinite set of problems in terms of the
small parameter characterizing the boundary perturbation. Section 4 is devoted to the general analysis of
elastic problems when displacement type boundary values are prescribed on spherical surfaces. This solu-
tion is due to Lure and is given here for the sake of completeness as well as for better understanding of the
reader of the analysis to follow. Sections 5 and 6 are essentially devoted to the solutions of the perturbation
problems. We have restricted the analysis up to the first order perturbation field only. It can, of course, be
carried through for higher order perturbation fields using the same technique. However, the calculations
beyond the first order perturbation field become very unwieldy. We deduce explicit expressions for the dis-
placement fields for the zeroth and first order perturbation fields. In Section 7, using Betti’s reciprocal the-
orem, we derive explicit expressions for the net forces and net torques required to produce the applied
translation and rotation of the inclusion. These expressions are valid up to the first order in the small
parameter characterizing the boundary perturbation. No attempt is made to establish the convergence of
the perturbation solutions, which is far too complex to be investigated in a problem of this kind. However,

! One of the reviewers brought my attention to two more books by Guz and Nemish (1982, 1990) where solutions of some additional
non-canonical three-dimensional elasticity problems are presented. I have been however not able to see these books.
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as we show in Section 7, in a particular case involving the translation of a prolate spheroidal inclusion, the
first order perturbation solution is within an absolute error of 6% when compared with the exact solution of
the problem. The same order of accuracy can be expected from other shape perturbations.

We begin by introducing the notation that will be used in the subsequent analysis. Bold face characters are
used to mean vectors. The symbol V stands for the three-dimensional del operator. Second order tensors are
designated by capital letters with hats. The symbol I stands for dyadic idemfactor while the symbols ®, @ and x
are meant to designate the operations of dyadic multiplication, scalar product and cross product, respectively.

2. Spherical harmonics: some basic definitions and properties

In this section, we recall some basic properties of harmonic functions and spherical harmonics that will
be frequently used in the subsequent analysis. Let (R, 0, ¢) be the corresponding spherical coordinates re-
lated to the Cartesian coordinates through the mappings

x; = Rcosfsin¢, x, =Rsinfsin¢g, x; = Rcosq, 0<KR<o0, 002, 0<p<n. (1)

The spherical base vectors eg, €y, e, are related to the Cartesian ones e; (i = 1,2,3) by the following
equations:

er singpcosf singsinf  cos¢ e
e p = |cos¢pcos cos¢psind —sing e
e, —sin 0 cos 0 e3

A function F(x) is said to be harmonic in a closed region, i.e. the set of points consisting of a domain with
its boundary, if it is twice differentiable and satisfies Laplace’s equation, namely, V?F(x) = 0 at all interior
points. If the region or domain is an infinite one, a supplementary condition on the behavior of the function
at infinity has to be imposed (see, Kellog, 1929).

Separation of variables in Laplace’s equation written in spherical coordinates shows that its solution can
be represented as

in the interior, and

o0

F(X)=> S ()
n=0
in the exterior of a sphere of radius a (say) with its center coincident with the origin. Here S, is a general
solid spherical harmonic of degree n, which admits the representation

S, (R7 0, ¢) = (g) Yﬂ(g’ ¢)a Sf(n+1)(R7 0, (]5) = (%) " Y,,(@, ¢)7

where n=0,1,2,..., and Y,(6, ¢) is the general surface spherical harmonic of degree n and is given by
Y, (0,¢) = Z(a,@ cosn0 + b" sin n0)P® (cos ), b = 0.
=0
Here P (cos¢) is the associated Legendre function of the first kind, of degree n and order k, and

af{w, b,({"> (k=1,2,... k) are 2n + 1 arbitrary constants. For any given non-negative integral values of n,k,
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k/2 dkPn(ﬂ) ( ) _ L d”(,ﬁz 7 l)n
dyt 7" 20 d9"
where P,(1) is the Legendre polynomial of degree n.

Next, a vector solid spherical harmonic of degree n, S,, is a vector-valued function of R, 0, ¢ which al-
lows a representation of the form

PY(9) = (1=

n

Sn = R”Y,,(Q, (,25),

in which Y,,(0, ¢) is the corresponding vector surface spherical harmonic of the same degree with the prop-
erty that given any constant vector a, a ¢ Y,(0, ¢) is a scalar surface spherical harmonic of order n. Taking,
for example, a = e;, we observe that each Cartesian component of Y,(0, ¢) is a scalar surface spherical har-
monic of degree n. R

Similarly, a dyadic solid spherical harmonic of degree n, S,, is a tensor-valued function of R, 6, ¢ which
allows a representation of the form

§n = Rn?n(gv ¢)>

in which SA{”((), ¢) is the corresponding vector surface spherical harmonic of the same degree with the prop-
erty that given any constant vectors a,b, ae Y, (0, ¢) e b is a scalar surface spherical harmonic of degree n.
Taking, for instance, a =e;, b = e;, we observe that each Cartesian dyadic component is a scalar surface
spherical harmonic of degree n. Any polyadic solid spherical harmonic can be defined in a similar fashion.

We also recall that if Y, Y, are two scalar surface spherical harmonics of different degrees m, n, then

/ Y,¥,do =0, 2)

where dw = sinpd¢ d0 and the integration is over the surface of a sphere of unit radius.

Next, recall the theorem that the value of any finite single-valued function v(6, ¢) given over the surface
of a unit sphere can be expressed, at every point of the surface at which the function is continuous, as a
series of rational integral surface spherical harmonics, provided the function has only a finite number of
lines and points of discontinuity and of maxima and minima and this expansion is unique (Hobson,
1955; Jeans, 1966). The expansion formula is as follows:

o0 n

v(0,¢) = (al™ cosm0 4 b™ sin m@)P™ (cos ¢), b =0, (3)
n=0 m=0
where
—m)!
am = %ym /P;”(cos @) cosm0'v(0/, ¢")do,
2n+1)(n — m)! “)
bf,‘m) = W /PZl (COS (,bl) Sin m0/0(9,7 (,b,) d(U/.

Here yo=1/2 and y,, =1 Vm > 1 and the integration is over the entire surface of a unit sphere.

For the special case where the function v(6, ¢) is expressible in the form v(0, ¢) = g,(x)/R" in which g,,(x)
is a finite polynomial in x (X = (x1, x»,x3)) of degree n, it can be expanded into a series of surface spherical
harmonics using a more straightforward method belonging to Gauss (see Hobson, 1955, p. 147). First, the
function g,(x) is represented as

[n/2]

g,(x) =Y R¥S, (5)

i=0
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where [1/2] is equal to the integer part of n/2. The solid spherical harmonics S,,_,; are determined by re-
peated application of the Laplace operator to Eq. (5) and using the following identity:

V3 (R¥S, ) = 2i(2n — 2i + 1)R* %S, 5,

resulting in the following simultaneous equations:
[n/2]
Vig,(x) = > 2i(2n — 2i+ )RS, 3,
i=1
[n/2) .
(V?)°g,(x Z 2i(2i — 2)(2n — 2i + 1)(2n — 2i 4 3)R¥ S, o,

/2 '2n—2z+1)(n—z—k+1)
2 _2 ! R21 2kS
(V) & (x Z (n—)1(2n — 2 — 2k + 2)! 2

2[n/2\(n + 1+ 0(m)!(1 +6(n))!

{(n+06(n))/21(2 +20(n))l "
where we have introduced the notation 6(2n) =0 Vn=0,1,2,..., and where 6(2n+1)=1Vn=0,1,2,...
From the last equation in (6), the value of Sj, is determined; from the preceding one the value of S> 5.,
and so on, until the value of S, is determined. If we divide (5) by R", we have an expression for integral
algebraic function of cos0sin ¢, sin0sin ¢, cos ¢ as the sum of surface spherical harmonics, i.e.
[n/2]

(6¢ Zyn 2iy S, = nYn-

(V)" g,(x) =

Similar results also hold for any polyadic integral algebraic function of cos 0sin ¢, sin 0sin ¢, cos ¢. As a sim-
ple illustration of the above results, let us express the dyad ez ® e in dyadic surface spherical harmonics.
Obviously, in this case, v,(x) = V2(x) = R® R. Then, it follows from the last equation in (6) that

So :—VZ(R®R)

wlv—o

while from Eq. (5), we derive
S;=R®R-R? ;
Thus, in this case,

er ® eg Z?z-ﬁ-?m

~

-~ I
Y2:eR®eR_§7 YO

Finally, a solid spherical harmonic of degree # is a homogeneous function of x of order » and as such sat-
isfies Euler’s theorem on homogeneous functions, namely,

Re VS, =nS,.

(7)

UJI'—')

Similar equations can be written for any vector, dyadic and in general for any polyadic solid spherical har-
monic of degree n.
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3. Statement of the problem and boundary conditions

Consider an unbounded three-dimensional space filled with a homogeneous isotropic elastic medium
with Young’s modulus £ > 0 and Poisson’s ratio v (—1 < v < 1/2), containing a rigid, nominally spherical
inclusion, i.e. an inclusion whose shape deviates slightly from that of a perfectly spherical inclusion of ra-
dius a, hereafter called the reference sphere. The inclusion is given a small general motion in any way with
respect to the center of the reference sphere. It is well known that any general motion of a rigid body is
compounded of a motion of translation and one of rotation. In view of this observation as well as the linear
nature of the response of the medium, it follows that there will be no loss in generality if we treat these cases
separately. Thus, let us assume that the inclusion is given a small translation ug and a small rotation @ with
regard to the center of the reference sphere along some arbitrary directions. We introduce a Cartesian coor-
dinate system with its origin at the center of the reference sphere. Then, the surface of the nominally spher-
ical inclusion may be described by an equation of the following form

R =a[l +¢f (0, ¢)], (8)

in which ¢f(6, ¢) is an arbitrary function such that max|ef(0, ¢)| < 1. In what follows the three-dimensional
space with the nominally spherical inclusion deleted will be denoted by 2, while that with the reference
sphere deleted by €,. The symbols 002, 0, are used to designate the surface of the nominally spherical
inclusion and that of the reference sphere, respectively.

In the absence of body forces, the field equations characterizing the equilibrium of a linearly elastic,
homogeneous isotropic solid are given by

27 = Vu+ (Vu)',

Vv ~
A ~ 9
& 2u<—1_2vIVou+1), 9)
Ves=0,

in which u is the displacement vector, (Vu)® is the transpose of Vu, 7 is the strain tensor and 6 is the cor-

responding stress tensor. Provided the displacement vector is at least twice differentiable, elimination of the
stresses among equations in (9) leads to the displacement equations of equilibrium

1 .
V2u+mVVou:O in Q. (10)
The solution of Eq. (10) is subject to the following boundary condition
u=u +® xR onoQ. (11)

Furthermore, the solution must satisfy the condition at infinity requiring that u be at least of O(R™!) as
R — oo (uniformly in 0 and ¢).
The net force and the net torque exerted by the inclusion on the medium are given by the formulae

P:/no&dQ, M= [ Rx (neé)dQ, (12)
0Q 0Q

where n is the surface normal directed into the inclusion.
The presence of the small quantity ¢ induces the idea to represent the displacement vector as

u= Ze’hw in Q. (13)
=0
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Then putting (13) into (10) and equating the coeflicients in the like powers of ¢ in the resulting equations, we
see that each individual perturbation u'” satisfies an equation of the form (10), namely,

1
1 -2y

Vil + VVeu’ =0 in Q. (14)

Considering the case of translation first, the solution of Egs. (14) must satisfy the following boundary con-
dition on the surface of the inclusion

Zsiu(i) =u, on 0Q, (15)
=0
and the condition at infinity

u) = O(R™") as R — oo (uniformly in 0 and ¢). (16)

Expanding the function u” in Taylor’s series around R = a, we have

N 61 @ =, ¢/ aiu(i>
0 — _ (R — z
u _;ﬂ(ze a)’ ; ; a0, ) 7= (17)
Putting (17) into (15), we obtain
o] 00 a/
i (af (0 Rea = 0Q,
) € ,:Zoe (af (0, )) ol i on
which can be rewritten as
S )
; Z (af (0, ¢)) aRf rea| =uy on 0Q. (18)

Now equating the like powers of ¢ on both sides of Eq. (18), we have
u® =y, on 09,

l_ i1 a7 . (19)
“():_Zﬁ“jf/(g’qb)w on0Q, Vi=1,273,...
=

Similarly, for the case of pure rotation of the nominally spherical inclusion, the boundary conditions to be
satisfied on the surface of the reference sphere are

0)

u? =@ xR on dQ,

0 ou 00
=af( 7¢)<m><e _G_R) on 0OfZy, (20)
dul—9)

OR’/

u<">=—2—afff(9 ¢) on dQ, Vi=2,3,...
=

Thus, the problems are reduced to those of finding the solutions of the system of Eq. (14) satisfying the

boundary conditions (19) and (20) prescribed on the surface of the reference sphere and the conditions

at infinity.
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4. General analysis

It is well known (see, for instance, Lure, 1964) that in the absence of body forces, the displacement vector
becomes a biharmonic vector. In this case, as shown by Trefftz, the displacement vector may be represented
in the form

u=U+ (R - VY, (21)

where ¥, U are respectively a harmonic scalar and a harmonic vector. This representation is especially suit-
able for cases where boundary conditions are prescribed on spherical surfaces as is the present case. It can
be shown by putting (21) into the equations of equilibrium (10) that

(l—2v)‘1’+(3—4v)RoV‘P+%VoU:O. (22)

It is assumed that the displacement vector given on the surface of the sphere meets the requirements out-
lined in Section 2 and as such can be expanded into a series of surface spherical harmonics, namely,

u‘R:a = U|R:a = ZYk(Gv ¢), (23)
k=0

where Y,(0, ¢) is a vector surface spherical harmonic of degree k.
Thus for the external problem (R > @) we have

o]

U= U =3 (5) vi0.0) (24)

k=0

where U_ ;) are the homogeneous harmonic vectors of degree —k — 1. Similarly, the harmonic scalar ¥ is
also expanded into surface spherical harmonics, namely,

00

Y= Z Y_(er1) = Z
k=0 k=0

Putting (24) and (25) into (22), the following equation is obtained:

(&) Z 0. 9) 25)

1
(=20 1) = B =)k +2)¥ 1) + 5V @ Uy =0, (26)

whence it follows that
VeU

v_ = . 2
"D 7 2Bk + 5 — 2v(2k + 3)] 27)
Therefore, the solution of the external problem is given by
= 1 VVeU_
_ - “(R2 _ 2 (k1) in Q. o)
" ;{U R LR e gy i e 28)

This is the general solution of the problem given in Lure (1970). It is important to note that since each per-
turbation field satisfies equations that are exactly of the same form as those for elastic equilibrium (see Eq.
(14)), the representation (28) is therefore valid for all perturbation problems. We will therefore use Eq. (28)
to deduce solutions for the different perturbation fields. In view of greater simplicity, we will commence
with the case of pure rotation.
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5. Rotation of a nominally spherical inclusion

In this case, the boundary conditions of the problem are (limiting up to only first order perturbation):

u? =@ xR on dQ,

(0)
ul) = af (0, ) <m X eg — Cu

OR

) on 08. (29)

Solution of the zeroth order perturbation is straightforward, because the right hand side of the first equa-
tion in (29) is already a surface vector spherical harmonic of degree one, namely

Y, = am X e;.

Hence, the only surviving member of the sequence {U_¢41)} in Eq. (28) is U_, which is given by

3
U, = (%)QYI = %m X €g. (30)
Putting (30) into the general solution (28), we obtain
u® :U,ﬁ%(Rtaz)% in Q. (31)
However, Ve U_, =0, and so Eq. (31) takes the following final form:
3
u® = %(o x ep in Q. (32)

The corresponding stress-vector corresponding to a surface with the outward normal n can be shown to be
3

noo-(o):3u%(m><n—2m><eR®noeR+n><eR®u)oeR). (33)
For our problem, n = —eg, and therefore, Eq. (33) gives
nes” = —3ue; x® on . (34)

Thus, the net force exerted by the inclusion on the medium is

PO = —/ er 06" dr = —3/1/ ez X odr = —3u</ eRdr) Xxo=0, (35)
0Qo 0Q Qg

where 0 is a null vector. Therefore, the inclusion does not exert any force on the medium.
On the other hand, the net torque required to produce the rotation ® is

M© — / R x (nes”)dr = —3#/ R X (e x ®)dr. (36)
Q) 0Qy
However, R X (exg X ®) = ez ® R e ® — Rw. Therefore, Eq. (36) takes the form
M9 = 300 @ / ex ®epdr + 3uam dr. (37)
0Q Qg

Using the expansion of the dyad ez ® eg into surface spherical harmonics (see Eqgs. (7)) and invoking the
orthogonality property of the surface spherical harmonics of different orders over the surface of a unit
sphere, we find that

MO = —jaw e I dt + 3uae dt = 2uam dr = 8nud’m. (38)

80, 09 09
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This is the solution of Lure, of the problem of a perfectly spherical rigid inclusion in bonded contact with an
elastic solid when the former is subjected to a small constant rotation in an arbitrary direction.
We rewrite Eq. (38) in the form:

MY =A" o, (39)
where
Kw) = 8nua3f. (40)

. ~(0) . . . -~ .
We call the symmetric tensor A~ the rotational stiffness tensor. Physically, the component A;; characterizes
the ith component of the torque required to produce a unit rotation of the inclusion around the x;-axis.
This completes the solution of the zeroth order perturbation field.

5.1. Solution of the first order perturbation field
We now proceed to the solution corresponding to the first order perturbation field. The boundary con-
dition to be satisfied is
ou®

u = af(0, ) (u) X eg — W) on 0Q,. (41)

Assuming that f{0, ¢) is a sufficiently smooth function to allow for a uniformly convergent in 6 and ¢ series-
expansion like

£00,¢) = fu(0,), (42)
=0
where f;(0, ¢) is a surface spherical harmonic of degree k, we rewrite Eq. (41) as
ull) = 3aZm x erfi(0,¢) on 0€Qy. (43)
=0

The problem now is to expand (43) into a series of surface spherical harmonics. To do this, we can use Eqgs.
(3) and (4) for expanding any arbitrary function of 0, ¢ into surface spherical harmonics. However, for our
problem, it is more expedient to follow a different route based on a rather ad hoc method. The presence of
the term ez f; in (43) naturally induces the idea to consider the gradient of a function like R"'f. For instance,

V(R"f;) = mR" 'epfi + R"V f;,
so that the function

R'""V(R"f;) = mepfi + RV f; (44)

is a homogeneous function of order zero, but not necessarily a surface spherical harmonic. We now pose the
question: for what values of m, is R'~"'V(R"f;) a surface spherical harmonic? Assuming that it is a surface
spherical harmonic of degree p, the question is how m and p are related to k. Since, by hypothesis it is a
surface spherical harmonic of degree p, the relevant solid spherical harmonic must satisfy Laplace’s equa-
tion, namely,

VR VR)) = VRV R + RV (R'))
+2(1—m+p)R" R e VV(R"S;) = 0.
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The above expression, after some simple vector manipulations, can be rewritten as
VARV (R i) = [2m — k(k + 1) + p(p + DR V(R f;)
+(m=K)plp+1)—(k+1)(k+2)R iR =0. (45)
For Eq. (45) to be identically zero for all values of R, R and f;, it is necessary that
2m —k(k+1) +pp+1)] =0,

46

(m—k)plp+1)—(k+1)(k+2)]=0. (46)
From the second equation in (46), it follows that

m=k or m=—k—1. (47)

On the other hand, the second equation in (46) implies that if m =k, then p = —k or p =k — 1 while if
m=—k —1, then p=k+ 1 or p=—k—2. Thus, there could be two distinct scenarios, namely

Ci_1 = R'"*V(R*f;) which is a surface spherical harmonic of degree k — 1. Corresponding to C;_, there
are two solid spherical harmonics, one of degree —k and the other of degree k — 1;°

Dy, = RFPV(R'*£,) which is a surface spherical harmonic of degree k + 1. Corresponding to Dy,
there are two solid spherical harmonics, one of degree —k—2 and the other of degree k + 1.

Of course, for our exterior problem, the solid spherical harmonics corresponding to the predominantly
positive degrees, namely, k — 1 and k + 1, must be discarded.
We thus have

Ci1 = R7'V(R'f}) = kepfi + RV 13,

48
Dyy1 = RPV(R™ M) = —(k + Derfi + RV fi. )
Solving equations in (48) for ezf;, we obtain
1
erfi = %1 (Cio1 — Dysy). (49)
Putting (49) into (43), we have
o0 o0 1
u =32 fio xeg=3ay 57 % (Gt =Di) on 02, (50)
=0 o Skt

Thus, with (50), the boundary data (41) is expanded into surface spherical harmonics and the solution of
the first order perturbation field is given by

- x k2 1 1 k
ul =30y s-ox [(%) Coi— () Dea+5(F -a) %2 2@k " {(%) CH}

1 5 5 1 a k+2
3R ”)3k+82v(2k+5)vv'{(7e) D"“}]

in Qo.

2 This is in accord with a well-known result in the theory of spherical harmonics, that says that corresponding to every surface
spherical harmonic of degree k, there correspond two solid spherical harmonics, one of degree k and the other of degree —k — 1.
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Thus, to O(¢), the solution of the problem is

a’ = 1 a\k ayk+2 1, , 1
u_RﬂDX%+3w;;2k+lwx{Qg(kl_(R> Dt 43R — ) s mr VY
a\k 1, 5 1 a\+2 2
.{<R> C’“}z(R “)3k+8—2v(2k+5)vv'{(1e) D’f“H*O(S) (51)

in Q.

The correctness of this solution can be immediately checked against the solution of a rather a trivial case.
Specifically, consider the case where the spherical inclusion is given a uniform perturbation ¢a along the
outward normal. In this case,

. 1, k=0
Tlo, k=1

and so
Ci=0 Vk=0,1,2,...
_eR7 k:() (52)
D, = .
e {0, k:172737...}

Putting (52) into (51), we obtain
(143
u= Ltg)m x ex +O(¢?) in Q. (53)

Note that as a result of this perturbation, the perfectly spherical inclusion of radius a again becomes one of
radius a(1 + ¢) and hence the exact solution of the problem, as per Eq. (32), is given by

3(1 3
u= a(}%s)m X ep In Q,
which, to first order in ¢, agrees with (53). This simple test renders credence to the correctness of the solu-
tion (51).

6. The translating nominally spherical inclusion

We now proceed to the solution of the problem of translation of the nominally spherical inclusion.
Limiting up to the first order perturbation field, the boundary conditions to be satisfied on the surface
of the reference sphere are

u?” =u, on 09,

3
5—-6v
Focusing first on the zeroth order problem, we note that Y, = uy, and hence the only surviving member of
the sequence {U_;+1)} in (28) is U_; which is given by

a
U,1 = Ello.

Therefore, the solution of the zeroth order perturbation field is

1 VVeU_ a RP—d® a
O_yU 4 R 1_a a
" AR ) S T T R T s e &

(54)
aV

[2(1 — V)T — ez @ ez] o upf (0, ¢p) on .

(3er @ ep — 1) o uy (55)

in QQ.
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It can be easily shown that the stress-vector corresponding to the surface R = a is

0 _ 6u(l —v)

~(0) _
(5—6v)a o

neg ’ = —eze0 on 0. (56)
Thus, the total force exerted by the reference spherical inclusion on the medium due to a constant transla-
tion wg is given by

PO — / nes®dr — wm (57)
Q)

This is the solution of Lure, of the problem of a perfectly spherical inclusion in bonded contact with an
elastic solid when the former is subjected to a small constant translation in an arbitrary direction.
The inclusion does not exert any torque with respect to the origin since

24nu(l — v)a?
MO = [ Rocpar = 2N (] ga) w0 (58)
09 5—6v 09
We write the expression (57) as
PO =17, up, (59)
where

~©0  24nu(l —v)a~
r=——-———1. 60
5—6v (60)
~(0
Wecall ' © the translational stiffness tensor. Essentially, I’ l(jo) is the ith component of the force required to
produce a unit translation of the reference spherical inclusion along x;-axis.

6.1. Solution of the first order perturbation field

We now proceed to the solution for the first order perturbation field. The boundary condition to be sat-
isfied on the spherical boundary R=a is

ll<1) = 5 36\1 [2(1 — V)/I\ —er X eR] L4 uOf(Hv ¢)
= 2 SR TA0.6) e D exi(0, 6)] eu o 04, (61)
k=0

The problem now consists in expanding the right hand side of Eq. (61) into a series of surface spherical
harmonics. Notice that the first term in Eq. (61), namely T e uyf;(0, ¢) is already a surface spherical har-
monic of degree k. The problem then reduces to that of expanding the term ez ® exfi(0, ¢) into a series
of dyadic surface spherical harmonics. To this end, we again adopt a technique similar to that developed
in the previous section. In particular, we note that the presence of the dyad ez ® ey is suggestive that we
look closely into quantities of the form V(R™ C,_;), V(R™ Dy, ); we have

V(R Ci_y) = k(my — D)R™ 'eg @ epfi + kR™ 'Lf; + (m; + 1)R™ex @ Vi
+kR"Vf ® eg + R" 'V @ Vi,

V(R™Dyi1) = (k+ 1)(1 — m)R™ 'ex @ exfi — (k + DR™ 'Lf; + (my + 1)R™ex @ Vf;
— (k+1)R™Vfi @ eg + R™"'V @ V1,
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so that the functions
R'"™V(R™Cy_y) = k(m; — 1)eg @ exfi + kLfi + (my + 1)Rex @ Vf;
+ kRVf; ® eg + R*V @ Vf;,
RV (R™Dyy) = (k+ 1)(1 — my)eg @ exfi — (k+ DIfi + (my + 1)Rex @ Vi
— (k+ 1)RVf; ® eg + R’V @ V£,

are homogeneous of degree zero. Requiring that they are surface spherical harmonics of degrees n; and n,,
respectively, the question is how m;, n; (i = 1,2) are related to k. Since by hypothesis they are surface spher-
ical harmonics of degrees n; and n,, the corresponding solid spherical harmonics must satisfy Laplace’s
equation, namely,

VHRTMMY(RMCy)} =0, VRV (R™ D)} = 0.

(62)

These equations yield

(m1 +n1)(n1 — my +1) :O, (m2+n2)(n2—m2+l) =0. (63)
Take, for instance, the first equation in (63). To simplify the analysis, let us put
my = k—1 or m; = —k. (64)

If my =k — 1, ny is equal to either —(k — 1) or k — 2. On the other hand, when m; = —k, n; is equal to either
k or —k — 1. Accordingly, two different dyadic surface spherical harmonics emerge, namely,

R*>*V(R*"'C,_,) which is a surface spherical harmonic of degree k — 2; corresponding to this surface
spherical harmonics are two solid spherical harmonics, one of degree —(k — 1) and the other of degree
k—2;

REP'W(R™*C,_1) which is a surface spherical harmonic of degree k; corresponding to this surface spher-
ical harmonics are two solid spherical harmonics, one of degree k and the other of degree —k — 1.

Similarly, putting m, =k + 1, —k — 2, we obtain two more surface spherical harmonics, namely,

R*V(R*"'D, ) which is a surface spherical harmonic of degree k; corresponding to this surface spher-
ical harmonics are two solid spherical harmonics, one of degree —(k + 1) and the other of degree k;
R“PV(R™%72D,1,) which is a surface spherical harmonic of degree k + 2 and corresponding to this sur-
face spherical harmonics are two solid spherical harmonics, one of degree k + 2 and the other of degree
—k —3.

Evidently, for our exterior problem, the solid spherical harmonics corresponding to the predominantly
positive degrees, namely, k—2, k, k + 2, should be abandoned.
We thus have

E, > =R7*V(R"'C,Ly) = k(k — 2)er @ exfi + kLf; + kRep @ V[ + kRV f; @ e + R°V & Vi,
Fi = R'V(R*C ) = —k(k + 1)eg @ epfi + k1fi — (k — 1)Rex ® Vi
+ kRV f; © eg + RV @ Vf;,
G = R*V(R'Dyy) = —k(k + 1)er @ exfi — (k+ DIf + (k + 2)Rex @ Vi
— (k+ )RV f; @ ex + R*V ®@ V£,
Hypo = ROV(RD,) = (k+ 1) (k + 3)er @ exfi — (k+ DIfi — (k+ 1)Rex @ Vi
— (k+ )RV f; @ &g + RV ® V ;.
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Denoting T, = Tfk which is, of course, a dyadic surface spherical harmonic of degree k, we rewrite Egs. (65)
as

k(k — 2)er @ exfi + kRegr @ Vf + kRV f; @ eg + R°V @ Vi = By — kT,

— k(k + 1)eg @ exfi — (k — 1)Reg @ Vi + kRV fi @ e + R*V @ Vfi, = F, — kT,

— k(k + 1)eg @ exfi + (k + 2)Reg ® Vi — (k+ DRV f; @ eg + RV ® Vi = Gy + (k+ 1) T,

(k+1)(k + 3)er @ exfi — (k + 1)Rex @ Vi — (k+ 1)RVf; @ ex + RV @ Vi = Hy o + (k+ 1T,
(66)

This is a system of four linear algebraic equations with four unknowns, namely,
er @ exfi, Rex@Vfi, RVfi®er, RVRVfi

Thus, each of these unknowns can be expressed in terms of the four dyadic surface spherical harmonics
(65). However, since for our problem, we are interested in ez ® egf; only, we only list the solution for
it:

1 -

N 1 -
%l [—2k+ 3 (His2 — Gi) — 57— (Fi — Ex2) | (67)

e @ enfi = 2% 1

In using Eq. (67), it should be assumed that E_ =0, E, =0 where 0 designates the null dyad.
In consequence of the relation (67), Eq. (61) becomes

3 > e 1 1 =R R 1 N N
n — - I _ R B
u 5—6v Z l:z(l V)Tk 2k + 1 {2k +3 (Hk+2 Gk) % —1 (Fk Ekz)}:l o U (68)

k=0

on 0Q.

Thus, expansion of the boundary condition into surface spherical harmonics for the first order pertur-
bation problem is accomplished and the solution for the first order perturbation field is straightforwardly
obtained using the general solution (28) as

3 - a k+1 = (A}k ﬁk
= 2(1-wT
5—6\)Z (R) { (1=v) k+(2k+1)(2k+3)+4k2—1}0

alh) —

k=0
a\ k+3 I/‘\Ik+2 a\ *-1 Ek—Z R2 — a2
(R) (2k +1)(2k + 3) (R) w1 23k +5—2v(2k + 3)) vV
an k+1 N G, F,
'{(R) (2(1_V)Tk+(2k+1)(2k+3)+4k2—1)}

R2 — a2 a k+1 o
3Bk 11— 22k L 7)) 2k + D2k 13y ° {(ﬁ) H"“}

TGk —1- 215(2? DR {(%)k_lﬁk_z}

in Q. Thus, the solution of the problem up to the first order in ¢ is given by u = u'” + ¢u”, where u'® and
u) are given by Egs. (55) and (69).

e U (69)
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7. The net force and the net torque exerted by the inclusion

In this section, we derive expressions for the net force and torque exerted on the medium by the inclu-
sion. They are given by Egs. (12) from which it is evident that the strain tensor corresponding to the dis-
placement fields (50) and (69) need to be calculated and this could be quite a laborious job. In what follows
we will proceed along a different route based on Betti’s reciprocal theorem. Once again, we will treat the
cases of translation and rotation separately.

7.1. Translation

Consider the following two elastic states. The first state corresponds to the infinite elastic medium with
the reference spherical inclusion. This reference inclusion is given an arbitrary translation u, with respect to
its center. The second state corresponds to the nominally spherical inclusion subjected to a translation uyg
with regard to the center of the reference sphere. Thus the boundary conditions for these states can be writ-
ten as

Du=1u, on 9Q,, Pu=u, on Q.

Reader would notice that for Betti’s reciprocal theorem to be applicable, it is necessary that the bodies
(their configurations, boundaries, etc.) in both states have to be the same. Thus, apparently, Betti’s theorem
can not be applied to these states since the first state involves the reference spherical inclusion while the
second the nominally spherical inclusion. However, note that since 0Q differs slightly from 0€Q, therefore
the boundary condition corresponding to the second state can be transferred onto 0, via the relations (19).
It is on this proviso that we can apply Betti’s reciprocal theorem to these states. Furthermore, in applying
Betti’s reciprocal theorem to bodies whose boundaries extend to infinity, the properties of the source and
the field at infinity need to be accommodated. This observation is due to Gurtin and Sternberg (1961) (see
also Gurtin, 1972). Following these authors, we consider the outer boundaries of the bodies to be bounded
by a spherical shell of a large radius p (p > a). With these assumptions, Betti’s reciprocal theorem applied
to the above states reads as

/ﬁoo(no<2)6)dr+/ Uy e (ne?6)c
aQO

0Q,

_ / (Ou® £ DD o (ne Ve)de +/ (Ou® £ D) o (n e V6)dr + O(e). (70)
0Q 0Q,

Now, let p — oo and note that the displacement vector attenuates at most as O(p~') when p — oo, and so
the stress vector corresponding to the spherical surface 0Q2, decays as O(p ) when p — oc. Therefore, the
contributions from 0L, as p — co can be ignored. Thus, (70) can be rewritten as

/ ao.(n.<2>a>dfz/ (Pu® + £@u) o (ne Vg)dr + O(e?). (71)
09

09

Now, since u, is a constant vector, we can write the integral on the left hand side of Eq. (71) as

u e / ne ¥gdr. (72)
0Qq

Note that since the origin is a singular point for (6, we can write

/ ne Yedr = / no(z)ﬁ'd‘t—l—/ ne ?é&dr, (73)
00 00y 00,180
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where 0Q, is the surface of a sphere of radius d where 0 < d < a with the center at the origin. Now, since the
integrand in the second integral in (73) does not have any singularity, we can use Gauss’s divergence the-
orem to convert it to a volume integral enclosed by the spherical boundaries 092, and 0Q:

/ n.<2>adf=/ Ve ?6dQ, (74)
0Q,U0Q) Q

where ' is the volume enclosed by the boundaries 0Q2,0Q,. Now, since the medium is in equilibrium,
Ve @6 =0 in Q> Thus, the second integral in (73) is zero, and Eq. (74) reduces to

/no(z)f;dr:/ ne ¥sdr. (75)
0Qq 02y

From Eq. (75), it follows that the surface integral in (72) is independent of the bounding surface and hence
it can be taken over any closed surface including the origin. We choose to take 0Q, the bounding surface of
the nominally spherical inclusion, as the bounding surface. Thus,

/ ne Yédr :/ ne @gdr. (76)
a2 00

But, the integral on the right hand side of the equation in (76) is precisely the net force exerted by the inclu-
sion on the medium, i.e.

P= / ne Ygdr. (77)
o0
In view of (77), the integral on the left hand side of Eq. (71) assumes the form:
/ e (ne?6)dQ =1, eP. (78)
o
Now, let us turn to evaluate the integral on the right hand side of Eq. (71). Obviously, we have

@, =uy and PulV|,, is given by (61), while ne V6|, by (56). In consideration of these relations,
it follows that

/ (O 4+ :OuD) o (ne V) dr = uy o PO 4 =Y g / uV de. (79)
09 (5—6v)a a2
In view of (68), the integral on the right hand side of Eq. (79) takes the form:
3 ~ o G, E
M dr = 2(1 = )Ty — Fo+ =2 — 2| dr. 80
[ e 56V/mol( 0T For ST (80)

Notice that in view of the orthogonality property of surface spherical harmonics of different degrees over
the surface of a unit sphere, only Oth order harmonics are retained in the integrand in Eq. (80).
However, from (65) we have that

Fo=0, Go=-To=—-1fy, Ey=VaVERS). (81)

3 Strictly speaking, the volume Q' might be comprised of ‘chunks’ of elastic regions as well as absolutely rigid regions. Equation
V e Y6 = 0 is valid for absolutely rigid regions as well, since the stress tensor ()¢ is identically zero in such regions.
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Therefore Eq. (80) takes the form:

-~ 1
Wdr = 4nd® |1fy — ——— R* - 2
/a%u dt = 4na {fo 5(5_6V)V®V( fz)]'llo (82)
In consequence of the relations (78) and (82), Eq. (79) delivers to
e P=P¥euy+eupe T oiig+O(&), (83)
where
~0  24un(l —v)a [~ 1 5
r =——\1lfp—-—— R . 84
5—6v fo 5(5—6v)v®v( f2) (84)

If we denote by T the stiffness tensor corresponding to the nominally spherical inclusion, then, by Egs. (59)
and (60), it follows that the force P exerted by it on the medium due to the translation u, (with regard to the
center of the perfect sphere) is

P=Toeu. (85)

On the other hand, the force P'” exerted by the reference spherical inclusion on the medium due to the
translation u, is given by

PO =T" e, (86)
Putting Egs. (85) and (86) into (83), we find that

o ou=ue (T +e0") e +0O() (87)

From Eq. (87), it follows that up to O(e), the stiffness tensor for the medium with the nominally spherical
inclusion is given by

~ a0 ~(1

F=1" 4" yo). (88)
Thus, up to O(e), the net force exerted by the nominally spherical inclusion to due a constant translation ug
with respect to the center of the reference spherical inclusion is

PS _ 24nu(l —v)a

P=Toeu = T & (I 4+efp)ug — ¢ V@ V(RYS) eu. (89)

1
5(5—6v)
Eq. (89) shows that in general the direction of the net force required to produce the constant translation of a
nominally spherical inclusion is different from that of the applied translation.

In addition, the nominally spherical inclusion would exert on the medium a torque about the origin,
which can be calculated using the equation:

M= | Rx (neg)dr. (90)
)

To evaluate (90), we again make use of Betti’s reciprocal theorem. For the first state, we take the reference
spherical inclusion subjected to a small arbitrary rotation @ around its center, while for the second state we
take the case of the nominally spherical inclusion subjected to the translation u, with respect to the center of
the reference spherical inclusion. Using the same arguments as before, we deduce that

/ (@ xR) e (ne@g)dr = / (up + eu”) o (n e Mg)dr + O(e?). (91)
20,

o
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Considering the identity
(@xR)e(ne@6)=(R x (ne@¢)) e,

we rewrite (91) as

0e / (R x (ne?g))dr = / (up + eu')) o (ne Veg)dr + O(e?). (92)

09y
As before, note that since the origin is a singular point for ', we can write the surface integral on the left
hand side of Eq. (92) as

/ R x (no<2)&)d‘c:/ R x (no(z)é)dr+/ R x (ne ¥g)dr, (93)
o 00y 00,002
where 0Q,; is the surface of a sphere of radius d where 0 <d < a with the center at the origin. Now, the
integrand in the second surface integral on the right hand side of Eq. (93) does not have any singularity
and it can be converted, by means of some well-known results from tensor analysis (see, for instance, Lure,
1970, p. 847) to the following volume integral enclosed by the spherical boundaries 0Q, and 0Q:

/ R x (ne@¢)dr = / (R x Ve@6—2y)dQ, (94)
J 0Q,U0Q) 4

where
1 R
V=5 en X (e, »?6). (95)
Since the stress-tensor in linearized elasticity theory is symmetric, it is a simple exercise to show from (95)
that y = 0. Furthermore, since the medium is in equilibrium, V e 26 = 0 in Q. Thus, the integral in (94) is

zero and Eq. (93) assumes the form:

/ R x (ne@6¢)dr = / R x (ne @g)dr. (96)
20,

30,
Therefore, the surface integral on the left hand side of Eq. (96) is independent of the bounding surface and
hence it can be taken over any closed surface around the origin. As before, we choose to take the surface of
the nominally spherical inclusion, 02, as the bounding surface. Thus,

/ R x (ne@¢)dr = / R x (ne ?6)dr. (97)
9 00

But, the integral on the right hand side of the equation in (97) is precisely the net torque exerted by the
nominally spherical inclusion on the medium, i.e.

M= [ Rx (ne?¢)dr. (98)
)
Therefore, Eq. (92) assumes the form:
oeM= [ (u+eu')e(neVs)dQ,+ O(?). (99)
a0

Proceeding now on to evaluate the surface integral on the right hand side of Eq. (99), we note that n e (Vg is
given by Eq. (56). Thus,

/ u e (neVé)dr =u, o/ (neMg)dr = 3, o/ ez X odr
0Qq 02

0Q

= —3uuy e {(/ eRdf) X (o} =0, since / exdt = 0. (100)
0Qq 0Q
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Hence, Eq. (99) delivers to the form:

oeM= —s3,u/ ul) e (e x @)dt + O(¢?).
0Q)
However, owing to the identity u") e (ez x @) = (u')) x ez) ® ®, Eq. (101) reduces to

oM — _83,4(0./ (@ x eg)dr + O(&),

09,

whence it follows that
M = —83u/ ull) x epdr + O(&?).
0Qo

Putting the expression for u'" from (61) into (103), we obtain

-9

_ N o 4 >
M_85_6v;[2(1—v)a1—a2]0u0+0(8),

where

&1 :/ Tk X eRdr,
09

&2 = / (eR ®eR) X eRfkd‘C.
09

Considering the first integral in (105), we can write

a1:/ TxeRfkdfzix</ eRfkdr>.
0Q 0Qq

Substituting the expression for e f; from (49) into (106), we obtain

1 ) 47'561251(1/\
o = — 1 Cii —Dyyy)dr ) = IxC
8 =5 I (/ago( k-1 — Disr) T) T R e}

where ¢;; is the Kronecker’s delta.
Now take the second integral in (105); we observe that

&2:/ (eR®eR) XeRfkd‘L':/ (eRxeR)@)eR_ﬁ{dT:ﬁ.
0Qy

0Qq

Thus, in view of relations (107) and (108), Eq. (104) delivers to the following final form:

24nu(1 — v)a

M = eaV(R
eaV(Rf) X gy

Uy + O(Fz)

2561

(101)

(102)

(103)

(104)

(105)

(106)

(107)

(108)

(109)

Note that the force exerted by the nominally spherical inclusion on the medium is given by Eq. (89). Thus,

up to O(e) Eq. (109) can be represented as

M = aV(Rf,) x/ ne ?edQ + O(e?).
0Q

Subtracting the above equation from (90), we see that up to the first order in ¢

/ R — eaV(Rf,)] x ne @6dQ = 0.
oQ

(110)
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Thus, it follows from (110) that if the inclusion is given the translation with regard to the point
Ry = eaV(Rf}), the inclusion would not exert on the medium any torque. Following Brenner (1964,
1963), we call this point the center of elastostatic stresses. As shown by Brenner (1964), up to the first order
in ¢, this point corresponds to the centroid of the nominally spherical inclusion (see Appendix A).

We now proceed to the case of rotation.

7.2. Rotation

The toque exerted by the inclusion on the medium is given by

M= | Rx(neg)dr. (111)
oQ

Here 6 is the stress-tensor corresponding to the case of rotation of the nominally spherical inclusion. To
evaluate (111), we again use Betti’s reciprocal theorem. Consider two elastic states in which the first state
corresponds to the perfectly spherical inclusion subjected to the rotation @ around its center while the sec-
ond state to the nominally spherical inclusion subjected to the rotation ® around the center of the reference
spherical inclusion. Applying Betti’s reciprocal theorem to these states and following the same lines of argu-
ments as those used for the case of translation, we obtain

/ (@ xR)e (ne@g)dr = / @ue(neVg)dr 4 O(e?). (112)

0Qy

In Eq. (112), n e V6 is given by (34) with o replaced by @, and Pu by (50). In consideration of these equa-
tions and using arguments similar to those used for the case of pure translation, we deduce that

GJOMZQOM(O)—S?),U/ u; e (e X ®)dQ. (113)
0Qy

Since u; @ (ex X @) = @ o (u; x eg), Eq. (113) then reduces to

(Y)oM:woM(o)—ﬁu(ﬁo/ (u; x eg)dr. (114)
Qo
Next, putting the expression for u; from (50) into (114), after some simple vector operations, we obtain
6)0M:(x)om<0)+89,ua(007\(1)0m7 (115)
where
~(1) s ~
A :}j/’aﬁ—%@mgwm. (116)
k=0 0%

To evaluate (116), we make use of the relations (67) and (81), and note that owing to the orthogonality
property of surface spherical harmonics of different degrees over the surface of a unit sphere, only zeroth
degree surface spherical harmonics should be retained; we thus obtain

~(1 dna® ~

M):?gumm—V®vm%n (117)
Next, since M is the net torque corresponding to the nominally spherical inclusion subjected to the rotation

—(0) . . o . . .
o and M " is that corresponding to the perfectly spherical inclusion subjected to the rotation ®, they can be
represented as
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~(0)

M=Aen, M'=A ea. (118)
Putting (118) into (115), we obtain

~ ~(0 ~(1
d)vo(o:(x)o(A()—i—89,uaA<))oa). (119)
It therefore follows from (119) that

~ ~ (0 ~(1
A=A" 4 e9uan” (120)

Thus, the rotational stiffness tensor for the nominally spherical inclusion is given by Eq. (120) and this ten-
sor is a symmetric one.

Thus, up to the first order in &, the torque exerted by the nominally spherical inclusion subjected to a
rotation ® around the center of the reference spherical inclusion is given by

M=Aeow=M"+:M" =8rua*|(1 +3sﬁ))m—8%V®V(R2fz)om . (121)

In addition, the inclusion would exert a force on the medium. This force is calculated using the equation

P:/ nedadr.
)

Again, we use Betti’s reciprocal theorem. For the two elastic states, we take the perfectly spherical inclusion
subjected to a constant translation uy. For the second state we take the nominally spherical inclusion sub-
jected to the rotation . Then following the same lines of arguments as in the case of translation, we deduce
that up to the first order in &, the force exerted by the inclusion on the medium is given by

6“(1_v)/ udr + O(&), (122)
a2

INERITY

where u is given by (61), which, upon substitution into (122), yields the relation

_ RS
st%wx aQOCOdr—&—O(.sz)219,24?!51%76‘)‘)))61(n><C0+O(82)
2
_ ‘%mx V(Rf) + O(). (123)

It is well known that in the special where the medium is an incompressible one (with Poisson’s ration v =
1/2) and if the displacement vector is interpreted as the velocity vector, equations of elastostatics reduce to
those for slow steady viscous flow of a fluid also known as Stokes flow. It can be seen from Egs. (89), (109),
(121) and (123) that they are consistent with Brenner’s results for the low Reynolds number resistance of a
slightly deformed spherical particle to small translational and rotational motions (see Brenner, 1964; Hap-
pel and Brenner, 1973).

We now consider some concrete examples of boundary perturbations:

Example 1. Consider first a rather trivial case where the shape perturbation is given by f'= —1. Thus, in
this case fo = —1, all other members of the sequence {f)} being zero.

Consider first the case of pure translation. With reference to Eq. (89), the net force exerted by the
inclusion on the medium is given by

_ 24un(l —v)a(l — s)u

P
5—06v

(124)
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Note that as a result of this shape perturbation, the original spherical inclusion of radius ¢ again becomes a
perfectly spherical inclusion of radius a(1 — ¢). Therefore, the exact net force, as per Eq. (57), is

_ 24un(l —v)a(l —¢) "
- 5—6v v
which agrees with Eq. (124). The inclusion does not exert any torque on the medium.
For the case of pure rotation, the net torque exerted by the inclusion on the medium, as per Eq. (121), is

given by

M = 8mua®(1 — 3e)o + O(&?). (125)
The exact net torque, as per Eq. (38), is

M = 8mua’(1 — &)’ o,

which, to O(¢) agrees with Eq. (125).
These simple tests render credence to the correctness of the foregoing analysis.

P

Example 2. As a second example, consider the case of translation of a prolate spheroid (see Fig. 1)* whose
equation is given by

X, %+
@ 2(1—g)

To O(¢), Eq. (126) can be written as

=1, 0<e< 1. (126)

2 1 1
R=a {1 + 8{—§P0(COS o) — §P2(cos o) +E cos 20P3(cos ¢)H + O(&?). (127)
Thus, in the case
-2 -1 1 ) 5 -R*
fo= BN fr= 71)2(005 o) +6 cos20P;5(cos @), R°fr = Terl.

Putting these expressions into (89) and (109), we find that the net force is given by

24npu(l — v)a 2(4 — 5v) 2

S S D 5 ek A 22 S S S
5 6v 55 _6n) ™ 55—y

while the net toque exerted by the inclusion is null.
If we introduce the notation

P= e e e ll():| + 0(82), (128)

then
e’ =2e+0(&?).

Thus, Eq. (128) can be rewritten in terms of the eccentricity, e, of the spheroid as

~ 24mu(l —v)a ,4(4 = 5v) ) 1 4
P=—""% [{1 C 3G oW T SE e Bt T O (129)

4 For the sake of illustration, the shape perturbations in Figs. 1, 3-6, 8 are grossly exaggerated.
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Fig. 1. Prolate spheroidal inclusion (Example 2).

For instance, if the applied translation is in the x3 = 0 plane, then equation uy ® 3 =0, and Eq. (129) gives

x = 7247[5(_1 6_vv)a [1 —é 7?8 : 2:;] uor + O(e4>7
~ 24mu(l —v)a ,2(4 — 5v) (130)
h=—<"¢6" {1 9556 )}”0”0(6 )
P.—0.

Kanwal and Sharma (1976) (see also Kanwal, 1983) give the exact solution of this problem using the sin-
gularity method. In particular, they show that the components of the net force are

32nu(1l — v)ug ae’

P = e a3 —me) m[(l £ o) /(1 — o)’

P 64nu(1 — v)ugae® (131)
7 2e— (1 =72+ 8ve?) In[(1+¢)/(1 —e)]’

P, =0.

Fig. 2 illustrates the absolute error of the perturbation solution (130) for different values of the eccentricity
of the prolate spheroid (Poisson’s ration is assumed to be equal to 0.25). It is clear from this plot that even
for a moderately prolate spheroidal inclusion with e = 0.7 (i.e. » = 0.71a), the absolute error does not ex-
ceed 6%. Thus, the first order perturbation solution yields remarkably accurate result. The same type of
accuracy may be expected from other boundary perturbations.

Consider now the rotation of the nominally spherical inclusion represented by Eq. (126). Referring to
Egs. (121) and (123), we infer that the inclusion would exert the net torque on the medium

M = 8nud’ {w(l—ez%> —ez%el(@elow +0(eh (132)

around the center of the reference sphere while it would not exert any force.
In the special case where the rotation is around the x3 = 0 plane, Eq. (132) simplifies to

M = 8mua’ we; (1 —é %) +0(e").

Example 3. As the third example, consider the case where the inclusion has the shape of a cardioid (see
Fig. 3), namely,

R =a(l+¢ecos ).
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Fig. 2. Absolute error estimates for P_X and P_Y for different values of the eccentricity of the prolate spheroid (Poisson’s
ratio = 0.25).

Fig. 3. Cardioid (Example 3).

In this case, the only non-zero member of the sequence {f;} is fi:
fi = Pi(cos ¢). (133)
Putting (133) into Egs. (89) and (109), we see that for the case of pure translation, the net force is zero, but
the inclusion would exert a torque with respect to the center of the reference sphere, which is given by
24nu(l —v)a
5—6v
Note that up to O(e), the centroid of the inclusion is, as per Eq. (A.3), is located at the point ¢aes, i.e. on the

positive x;3-axis at a distance e¢a from the origin. Thus, if the translation is given with respect to the point
eaes, then the inclusion would not exert any torque on the medium.

M= u x caes + O(&?). (134)
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Consider now the case of pure rotation. Putting (133) into Egs. (121) and (123), we observe that the net
toque exerted by the inclusion on the medium is null. However, the inclusion would exert a force which is
given by

24nu(l — v)a?

P=——5 "%

o x e; + O(&%).

Example 4. As the fourth example, let us consider the case where the shape perturbation is given by the
equation

1(6, ¢) = sin 0 cos Osin*pcos>¢.

As a result of this perturbation, the inclusion assumes the shape shown in Fig. 4.
It can be shown using the methods of Section 2 that the above function can be expanded into a series of
surface spherical harmonics as

. . 1 . 1 .
sin 0 cos Osin® pcos’p = EP%(COS $)sin 20 + ﬁPi(cos ¢) sin 20.
Thus, in the case the non-zero members of the sequence {f;} are

1 ) 1 .
fr= @Pg(cos $)sin20, f,= T%Pi(cos ¢)sin 20.

Of the two surface spherical harmonics, only f5 contributes to the first order perturbation field. Thus, if this
inclusion is given a translation u, with respect to the center of the reference sphere, the inclusion would
exert the following force on the medium:

24nu(l —v)a

P= —_——
5—6v |7 3505 6v)

(e1®e2+e2®e1)ou0 +O(82) (135)

Fig. 4. Inclusion shape corresponding to Example 4.
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Eq. (135) can be also written in component form if desired. In particular, if the applied translation is given
along the xj-axis (i.e. uy = upe;), from the formula (135), we find that
p.— 24nu(l — v)auy
5—6v

24nu(1 — v)auy ) )
+0(&?), Py=—-e—2"—1+0(), P.=0(?).
@), P= e I o) @)

On the other hand, if this inclusion is given a rotation ® about the center of the reference sphere, the
torque necessary to produce this rotation can be obtained by putting the value of f, into (121) with
the result

M = 8mua’ m—s%(q@ez—i—ez@el)om +0(&%). (136)

For instance, if the rotation @ is given around the x;-axis (i.e. ® = we;), Eq. (136) yields:

12npa’w

M, = 8nua’ow + O(e*), M, =—¢ 35

+0(%), M.=0().

In another special case where the rotation @ is given about the xs-axis, Eq. (136) simplifies to
M,=M,=0(), M,=S8nud’w+0().
Thus, to the first order in ¢, the torque required to produce the rotation ® = we; around the center of the
reference sphere is the same as that for the perfectly spherical inclusion.
Example 5. As the next example, we consider the case where the shape perturbation is given by
7(0, ¢) = sin Ocos?Osin’ pcos’ .

As a result of this perturbation, the inclusion assumes the shape shown in Fig. 5. It can be shown that the
function f{0, ¢) can be expanded into a series of surface spherical harmonics as

1 1 )
f(0,¢) = {MPE(COS ®) +wPi(cos d))} sin 30

= [iPé(cos ¢) — LP}l(cos ¢) — %Pi(cos d))} sin 0.

693 770

Fig. 5. Inclusion shape corresponding to Example 5.
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Thus, in this case

1 —LP M(cos)sin0, f, =

1
& P} (cos ¢) sin 0 + ——P;(cos ¢) sin 30,

1
770 1540

———P3(cos ¢) sin 30 — —— P4 (cos ¢) sin 0.

1 2
Js = 530 693
Of the above surface spherical harmonics, only f> contributes and we have
|
Ve V(RS =57
Thus, the total force required to produce the translation u, of the inclusion with regard to the center of the
reference sphere is
24npu(1 — v)a 1
5—6v 105(5 — 6v)

For instance, if the applied translation is along the x,-axis (i.e. uy = upe,), Eq. (138) gives

e D+ e ®es). (137)

P= (e Re;+e3Re) e —|—O(82). (138)

P, =0(&),
24nu(l —
p, 2ol = aw o
5—6v
p.= STVt o)
35(5— 6v)’

On the other hand, the net torque required to produce the rotation @ of this inclusion around the center of
the reference sphere is

1
M = 8nua’ m—g%(e2®e3+e3®e2)om + O(&?). (139)
In particular, if the rotation is given around the x3-axis (i.e. @ = we3), Eq. (139) yields

—A4npaiw

M, =0, M,=
(&), My =e—=g

+0(e%), M.=38nua’w+ O(e).

Example 6. Consider the case where the shape perturbation is specified as

10, ¢) = cos 20 + cos 2¢.

The resulting inclusion shape is illustrated in Fig. 6. The above shape function can be expanded into a series
of surface spherical harmonics. Listing only pertinent to our analysis the first three harmonics, we have

-1
foz?, f1=0, f,= cos2951n o+= (3cos o—1)
so that
1
\% ®V(R2 2) :6(761 X e — 2362 X e + 1663 ®e3).

Thus, if this inclusion is given a translation uy with respect to the center of the reference sphere, the inclu-
sion would exert the following force on the medium:

P__24nu0\0a{<1__81

1
5_ 6y 3) U — 3—30(5 — 6v) (791 ®e —23e, ®ep + 16e; ® 63) euy| + 0(82).

(140)
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Fig. 6. Inclusion shape corresponding to Example 6.

In particular, if the applied translation is along the x;-axis (i.e. uy = uge;), from the formula (140), we find
that

P, P,=0(s), P.=0(). (141)

~ 24nu(l — v)auy 57 — 60v )
I {1 ~ %3005 - 6v)} (&),

Fig. 7 illustrates the dependence on the Poisson’s ratio of the ratio of the magnitude of P, (Eq. (141)) to the
magnitude of P, corresponding to the perfectly spherical inclusion for different values of the small param-
etere. The effect of the Poisson’s ratio is such that the magnitude of the resultant force required to produce
the given translation of the inclusion decreases as the Poisson’s ratio increases. For instance, at ¢ = 0.5, the
magnitude of this force is about 81% of that corresponding to the perfectly spherical inclusion for v =0
whereas that for v = 0.5 is about 77%. The author is not aware of any numerical data available in the lit-
erature, which the above results can be compared with.

On the other hand, if this inclusion is given a rotation ® about the center of the reference sphere, the
torque necessary to produce this rotation is characterized by the equation

1
M = 8mua’ [(1 — &) — 8%(761 ®e; —23e; @ e, + 16e; @ e3) e | + O(?). (142)
For instance, if the rotation @ is given around the x;-axis (i.e. ® = we;), Eq. (142) yields:
20

27
M, = 811:,ua3w<1 - s—> +0(e?), M,=0(), M.=0().

For instance, the above formulae are indicative that for ¢ = 0.5, the magnitude of the total torque required
to produce the given rotation around the x;-axis is about 32.5% of that required for the perfectly spherical
inclusion.

In another special case when the rotation ® is given about the x3-axis, Eq. (142) simplifies to

Mx :My:O(Sz), MZ:8TC,LLG3(/J(1 —8§> +O(82)
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Fig. 7. Dependence of the load ratio with Poisson’s ratio for different values of the small parameter Epsilon.

Example 7. Lastly, we consider an interesting case where the shape perturbation is given by

f(9,¢)={(;17 91<9<927¢1<¢<¢2}' (143)

otherwise

)

The reader would notice that this perturbation results in gouging out a small spherical element of the spher-
ical inclusion (see Fig. 8a). The function (143) can be expanded into an infinite series of surface spherical

harmonics with f; being

k
Je = awPi(v) + > [ai cos(i0) + by sin(i0)|P) (v), v = cos §,

i=1

where
aro = #(02 - 0Ly,
ay = _(221:( kl )fi)l_ i) [sin i0, — sin i0,]L},
by = % [cos 0, — cosil;]L;.

Here the following notation is introduced:

cos ¢

Li(01,0, ¢y, ¢,) = / P} (v)dv.

cos ¢
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Fig. 8. (a,b) Inclusion shape corresponding to Example 7.

Since, to O(¢), the pertinent surface spherical harmonics are f, f1, f>, we only list their values below:

Jo= ;_71(92 — 01)(cos ¢; — cos ),

fi = ajpcos ¢ + (ay; cos 0 + by sin 0) sin ¢,

(144)
1
= §a20(3coszq_’> — 1) + 3(aa; cos 0 + by, sin 0) sin ¢ cos ¢
+ 3(az; c0s 20 + by, sin 20)sin’ ¢,
where
-3
ap = 3 (02 — 91)(0052¢1 - 00529{’2)7
-3, . . 1 . 1 .
an = g(sm 0y —siny)| ¢, — ¢, — 3 sin 2¢, +§ sin2¢, |,
-3 1 . 1 .
b = Q(cos% —cosO)| ¢, — b, — 3 sin2¢, ) sin2¢, |,
-5 . .
a) = 3 (02 — 01)(sm2¢2 COS ¢y — sm2¢1 cos ¢y), (145)
ar = 1_2_1t (sin 6, — sin 61)(sin3¢2 - sin3¢)1),

5 . .
by = Ton (cos 0, — cos 0;)(sin’ ¢, — sin’¢,),

an = % [sin 260, — sin 20,][3(cos ¢; — cos ¢,) — (cos’p; — cos’ ¢, )],
by = % [cos 20, — cos 20,][3(cos ¢, — cos ¢,) — (cos’ ¢, — cos’p,)].

Thus, the net force required to produce a translation of uy with respect to the center of the reference sphere
is given by
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P= w [{1 - .9024;91 (cos ¢, — cos ¢2)}u0 - eﬁv ® V(R*f3) eug| + O(e?),
(146)
where V ® V(R%f») assumes the following expression:
V ® V(R ) = axn(3e; @ e; — f) +3{ax(ey@e;s +es@e)) +hye;Des +e;Re)}
+6{an(e;®e —e;Re) +bnle;@e; +e,®e)}. (147)

In addition, the inclusion would exert a torque on the medium around the center of the reference sphere,

which is given by

24mu(l — v)a?
5—06v

Similarly, for the case of pure rotation, the net torque required to produce a rotation of @ around the center

of the reference sphere is

M=¢ (a“e] + b11e2 + a10e3) X Uy + 0(82). (148)

0, — 0
M = 8nud’ Hl -3 2471 L(cos ¢, — cos¢>2)}(o - S%V@)V(Rz b)) e | +O(e?), (149)

where again V ® V(R?f>) is given by Eq. (148). In addition, the inclusion would exert a force on the medium
24nu(l — v)a?
(5-06v)
The reader would notice that several interesting particular cases arise depending on choosing particular val-
ues of 0y, 0, ¢y, ¢». Here we carry out details of one such particular case, specifically the case where 0; = 0,
0, = 2m, which corresponds to gouging out an entire spherical strip from the reference sphere (see Fig. 8b).

In this case, Eqgs. (144) and (145) simplify greatly and the equations corresponding to translation, namely,
Egs. (146) and (148) reduce to

P=¢ o X (aj1e; + bye; + ajppes) + O(e?). (150)

_ 24mu(l —v)a? 1
P———F——— {1 —&5(cosd; —cos$y) rug
+84(516V) (sin’ ¢, cos ¢, — sin’¢, cos ;) (3e; © e3 — ) ey | 4+ O(&?), (151)
2
M= _81&121(146‘)\%(0052% — cos’g,)es x uy + O(&?),

while those corresponding to rotation, i.e. Egs. (149) and (150), to
3
M = 8nua’ Hl — 85(005 ¢, — cos ¢,)}m

+ 8% (sin’, cos ¢, — sin’ ¢, cos ;) (3e; @ e; — T) e +0(e%), (152)

18mu(1 — v)a?

P——
5 26y

(cos’p, — cos’¢,) o x e; + O(&?).
If, in addition to 0, =0, 0, = 2m, we assume that ¢, = n, ¢; =0, we see Egs. (151) and (152) reduce to

_ 24nu(l —v)a(l — &)

P
5—6v

u +0(%), M=0(), (153)
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and
M = 8nua*(1 — 3e)o 4+ O(?), P =O0(e?). (154)

Note that the resulting shape perturbation produces a new perfectly spherical inclusion of radius a(l — &)
and this case was discussed in Example 1. The reader would notice that Egs. (153) and (154) are those ob-
tained in Example 1.
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Fig. 9. Dependence of the load ratio on Poisson’s ratio for different values of the small parameter.
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Fig. 10. Dependence of the angle Theta on Poisson’s ratio for different values of the small parameter.
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Fig. 11. Dependence of the angle Phi on Poisson’s ratio for different values of the small parameter.

Finally, we have worked out a general case for the case of pure translation, specifically the case where the
spherical element corresponding to 0; = n/4, 0, = n/3, ¢, = /4, ¢p» = /3 is gouged out of the perfectly
spherical inclusion. Fig. 9 illustrates the dependence on the Poisson’s ratio of the ratio of the magnitude of
the resultant force for the gouged-out inclusion to that of the perfectly spherical inclusion for different
values of the small parameter ¢. Figs. 10 and 11 show the dependence on the Poisson’s ratio of the spherical
angles characterizing the direction of the resultant force for different values of ¢. The inclusion would also
exert a moment on the medium which is not given here, but be easily calculated using Eq. (150).

Various other shape perturbations can be treated in a similar fashion.

8. Closure

In the present article, we have presented the solution of the problem of a nominally spherical inclusion
embedded into an unbounded elastic medium and subjected to a small translation and a small rotation.
Physically such translational and rotational motions of macroscopic inclusions might be attributed to cer-
tain mechanisms of diffusional migration under the action of external forces. An inclusion can also migrate
in the absence of external forces. For instance, the influence of thermal fluctuations can give rise to the
Brownian motion of inclusions (for detail discussions of these mechanisms, see Geguzin and Krivoglaz,
1973). To the first order in the small parameter characterizing the boundary perturbation, explicit expres-
sions have been derived for the induced displacement field as well as for the net force and net torque re-
quired to produce the applied translation and rotation. In the special case where the elastic medium is
an incompressible one, these results are consistent with those derived by Brenner (1964), for the low
Reynolds number resistance of a slightly perturbed sphere to translational and rotational motions in an
unbounded fluid. Although no attempt has been made to establish the convergence of the perturbation
solutions, we have shown that in a particular case involving the translation of a prolate spheroidal inclu-
sion, the first order perturbation solution is within an absolute error of 6% when compared with the exact
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solution of the problem. The accuracy of the perturbation solutions can be further strengthened by adding
the solutions for higher order perturbation fields and using different techniques for improving the accuracy
of perturbation series (see, for instance, Van Dyke, 1974). Concluding this discussion, we note that the
methodology developed in the article can be applied to a number of closely-related elastostatic problems,

such as the one concerning a nominally spherical hole in an elastic medium under a uniform stress field at
infinity. Research in this direction is underway and will be reported in a future communication.
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Appendix A. Centroid of the nominally spherical inclusion
The centroid of the nominally spherical inclusion is determined by the formula
1
Ry :—/RdQ, (A1)
Vo

where V is the volume enclosed by the nominally spherical inclusion, i.e.

~ [ e
Q

First calculate V7; we have

ralltef a’ 4na’
V:/ dr/ R*dR = = (14 3¢f)dr +O(e?) = a’ fdt+0(?)
Q

3 Jaq, 3 o0,

4 3 > 4 3
- T;a +ea® > | fide+ O() = e 4 ednalfy + O(),

k=0 02 3

where 0Q; is the surface of a unit sphere.
We now move to evaluate the integral (A.1); since er depends on 0, ¢ only, we write

R—l/Re do—1 edr/al+ng3dRa—4 ex(1 +4¢f)dr + O(&%)
Ve T TV ey T4V Jog,

Fa4

5 f“a
= [ o) Z/ exfide + O(). (A.2)

Inserting the expression (49) for ez f, into (A.2) and taking into view the fact that only Oth order surface
spherical harmonics contribute to the integral in (A.2), we have

_ Z/ exfidt + O(&) = 4“8“ - Co+O(&") = aV(Rf,) + O(). (A.3)
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